{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb0ba9eefc0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 600000, "_total_timesteps": 600000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1687350309957705871, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAEnpF76GvXY/hA2qvXVVb76hKh++9BjRPcZ7sT+OrSo/k9JVP6jFf7wVHkg/zvi2vXQzBMBgi12/6LBjP5cstr59Tku/Qc1APD5uRz3QTVQ9FQvCP9KBLD0nRqK/LxKZvQSdlT775ibA7fPYPncKoD7FD40/QZvJP2KQf7+SLzrA30w0wFcgYz3ZFzS9pgi+PqNqvb8IXci+IQL2PgysQ79tRle/u0UTwPlFsb+WG8E9BVUxv6dylsAQJTC/qolBv+AUNr94Iww+RmgsP7r/Rj4EnZU+mVTEPpUJF8B3CqA+pwGKPwA5A0BwDAXAxxurPTLr1T+DxkY+P+ikvfqC/z4ZAlY/0CZvve9ART9ZEiM+JdIdwHqw37tE8Ci/F36UwFCz7j9B2AA/xVW3v43Fpj+qACVAg6fWPwFvVD+m+Ka9BJ2VPvvmJsDt89g+dwqgPtQMsz6RSss+4qnGPtx7xb1DUIQ+yG9uPQHWxrxEBGu/tIefPQ9zWz7l7Ao/+FAyvS+JOj/JWB8+gwMqPysdMT6rCAc/eaA0Plua5D5R8gw+D6XCPkcarz0b5lM/NIqwvQSdlT6ZVMQ+7fPYPncKoD6UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAs7Mc2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAzjEIvgAAAAB9TvS/AAAAAIByoj0AAAAA57z2PwAAAAB3YJY9AAAAAIVs4j8AAAAAKd8QPQAAAADmUOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ4Q5tgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHWXDj4AAAAAxOrmvwAAAABSPMk9AAAAANxm9D8AAAAABlcMPQAAAAABzNg/AAAAALjC6T0AAAAAbL7ZvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJO/irUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDIjI09AAAAAC0Q878AAAAAiXWPvAAAAABgW/0/AAAAAM3JaD0AAAAAs1DzPwAAAAD/+YE8AAAAAGTb978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADg5xo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAix+FvQAAAABFNPi/AAAAANntGr0AAAAA8Tb4PwAAAAAbk269AAAAAKZiAEAAAAAAURkMvgAAAAACJO2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQIbnHAqNIbyMAWyUTegDjAF0lEdAjsdO2iL2pXV9lChoBkdAixSiO3lS0mgHTegDaAhHQI7L3o5ggHN1fZQoaAZHQIrjFpEhJRRoB03oA2gIR0CO3gL/CIk7dX2UKGgGR0CKaheUpuuSaAdN6ANoCEdAjuFXxWkrPXV9lChoBkdAinqlPrOZ9mgHTegDaAhHQI765/ustCl1fZQoaAZHQIj9vyCnP3VoB03oA2gIR0CO/7WmP5pKdX2UKGgGR0CKam1FYuCgaAdN6ANoCEdAjxxv69CeE3V9lChoBkdAij2WTPjXF2gHTegDaAhHQI8h+1hLGrF1fZQoaAZHQIum7rJKaodoB03oA2gIR0CPP9zGxUvPdX2UKGgGR0CM5iNOM2m6aAdN6ANoCEdAj0SQ7DEWI3V9lChoBkdAi4l3Dm8ujGgHTegDaAhHQI9WxYeT3Zh1fZQoaAZHQIqVsxmCiAVoB03oA2gIR0CPWjkCmuTzdX2UKGgGR0CDOJA5aNdaaAdN6ANoCEdAj3PSWJJoTXV9lChoBkdAhwtBm5DqnmgHTegDaAhHQI94dzjm0Vt1fZQoaAZHQIcb9uLrHENoB03oA2gIR0CPkBzFuNxVdX2UKGgGR0CLEqdilSCOaAdN6ANoCEdAj5VexW1c+3V9lChoBkdAieT1klNUO2gHTegDaAhHQI+3hakhzNl1fZQoaAZHQIwyXDNyHVRoB03oA2gIR0CPvC6DoQnQdX2UKGgGR0CKWfsZYPoWaAdN6ANoCEdAj85YhllK9XV9lChoBkdAiYj9PUKArmgHTegDaAhHQI/R0Udq+Jx1fZQoaAZHQItiJgmZ3LVoB03oA2gIR0CP6mRbKRuCdX2UKGgGR0CKsf0mMOwxaAdN6ANoCEdAj+8Ux20Re3V9lChoBkdAhiL2OyVv/GgHTegDaAhHQJACCVfNRm91fZQoaAZHQIl/RqM3qA1oB03oA2gIR0CQBJ9iMHbAdX2UKGgGR0CKfrCNS619aAdN6ANoCEdAkBgSgkC3gHV9lChoBkdAiqL85Ke05WgHTegDaAhHQJAadu2qkuZ1fZQoaAZHQIrt89KVY6poB03oA2gIR0CQI5WiUPhAdX2UKGgGR0CFVwsRQJokaAdN6ANoCEdAkCU8DKYAsHV9lChoBkdAjHf4BFNL12gHTegDaAhHQJAxgIAwPAh1fZQoaAZHQIm7tpoK2KFoB03oA2gIR0CQM+TWoWHldX2UKGgGR0CMF43YL9deaAdN6ANoCEdAkD0FQZXMhXV9lChoBkdAiZbRXfZVXGgHTegDaAhHQJA+w/4ZdfN1fZQoaAZHQIjyAiqyWzFoB03oA2gIR0CQUbUHpr1vdX2UKGgGR0CKBteLNwBHaAdN6ANoCEdAkFV9V/+bVnV9lChoBkdAi05a9K28ZmgHTegDaAhHQJBe9nQID5l1fZQoaAZHQItTw5q/M4doB03oA2gIR0CQYLbzshPkdX2UKGgGR0CLk26DoQnQaAdN6ANoCEdAkG1fK2a2F3V9lChoBkdAi2oAGKQ7tGgHTegDaAhHQJBvrhVENON1fZQoaAZHQIvGxIQOFxpoB03oA2gIR0CQeSP/JeVtdX2UKGgGR0CIbxOlfqoqaAdN6ANoCEdAkHrjkhib2HV9lChoBkdAjYhxBeHBUWgHTegDaAhHQJCMCij+Jgt1fZQoaAZHQItPPaL4vexoB03oA2gIR0CQj9dYGMXKdX2UKGgGR0CI4zZcs189aAdN6ANoCEdAkJtEt7KJVXV9lChoBkdAiS8WAXl8xGgHTegDaAhHQJCc9O0svqV1fZQoaAZHQIolL6P8yetoB03oA2gIR0CQqYXqJMxodX2UKGgGR0CLWHffoA4oaAdN6ANoCEdAkKvoLgGbC3V9lChoBkdAitL1ZcLSeGgHTegDaAhHQJC1LZwn6VN1fZQoaAZHQIzVz1CgK4RoB03oA2gIR0CQtubp/wy7dX2UKGgGR0CJM8aXKKYRaAdN6ANoCEdAkMXTnA6+4HV9lChoBkdAh0y3jdYW+GgHTegDaAhHQJDJZ67dzn11fZQoaAZHQInvpRKpT/BoB03oA2gIR0CQ1qFa0QbudX2UKGgGR0CNAUGN70FsaAdN6ANoCEdAkNhQgDA8CHV9lChoBkdAiwG3zlLeymgHTegDaAhHQJDkpzo2XLN1fZQoaAZHQIwSMz0pVjtoB03oA2gIR0CQ5wk0Jng6dX2UKGgGR0CKZDswco6TaAdN6ANoCEdAkPBnjIaLoHV9lChoBkdAi2zWs7uDz2gHTegDaAhHQJDyHu1F6Rh1fZQoaAZHQIt5LuBtk4FoB03oA2gIR0CQ/348EFGHdX2UKGgGR0CLwjkgfU4JaAdN6ANoCEdAkQLrL+xW1nV9lChoBkdAjAGiZnctXmgHTegDaAhHQJERL6P8yet1fZQoaAZHQIq7luivgWJoB03oA2gIR0CRE5th/iHZdX2UKGgGR0CMfCzhP0qZaAdN6ANoCEdAkR/xJI1+AnV9lChoBkdAi+h6y8jAz2gHTegDaAhHQJEiXehwl0J1fZQoaAZHQIcXTUmUnohoB03oA2gIR0CRK5tSydFwdX2UKGgGR0CJwSmR/3FlaAdN6ANoCEdAkS1H9zfaYnV9lChoBkdAid+8MVk+YGgHTegDaAhHQJE55a7mMfl1fZQoaAZHQImi7ByjpLVoB03oA2gIR0CRPMcy31BddX2UKGgGR0CJj9lbNbC8aAdN6ANoCEdAkUq4/FBIF3V9lChoBkdAjNA6FVT722gHTegDaAhHQJFNfl+3H7x1fZQoaAZHQIwonck+otNoB03oA2gIR0CRW+onKGL2dX2UKGgGR0CJuRc1O0swaAdN6ANoCEdAkV50nkT6BXV9lChoBkdAitfxy4nWrmgHTegDaAhHQJFnuq94/u91fZQoaAZHQIu0LVUdaMdoB03oA2gIR0CRaas6aLGadX2UKGgGR0CJ3FZuhsZYaAdN6ANoCEdAkXYrI1cdHXV9lChoBkdAiEiKTB68hGgHTegDaAhHQJF4iIRAbAF1fZQoaAZHQIhrVhy8zyloB03oA2gIR0CRhbIgvDgqdX2UKGgGR0CL9+R02cawaAdN6ANoCEdAkYiFLeyiVXV9lChoBkdAjIvkM1CPZWgHTegDaAhHQJGYtpvgm7d1fZQoaAZHQIqdlGy5Zr5oB03oA2gIR0CRmybsF+uvdX2UKGgGR0CEVqt/WlMzaAdN6ANoCEdAkaRk3wTdtXV9lChoBkdAi8OSDRMN+mgHTegDaAhHQJGmHmcOLBN1fZQoaAZHQItBA593KSxoB03oA2gIR0CRspNO/L1VdX2UKGgGR0CH/ULEUCaJaAdN6ANoCEdAkbTcr7O3UnV9lChoBkdAgTzJDVpblmgHTegDaAhHQJHAMS/TLGJ1fZQoaAZHQIrhJYHPeHloB03oA2gIR0CRwtYQarFPdX2UKGgGR0CLMdRceKbbaAdN6ANoCEdAkdSJ97Wuo3V9lChoBkdAiVtZAprk82gHTegDaAhHQJHW6Kbayrx1fZQoaAZHQImsW8wpON5oB03oA2gIR0CR3/hMrVe8dX2UKGgGR0CMgxBppN9IaAdN6ANoCEdAkeHk+HJtBXV9lChoBkdAjDZbrLQokWgHTegDaAhHQJHuFc2R7qp1fZQoaAZHQIo14qmTC+FoB03oA2gIR0CR8HIWP91mdX2UKGgGR0CLsvPOY6XCaAdN6ANoCEdAkfnTH80k4XV9lChoBkdAhwgnPVurImgHTegDaAhHQJH8ZQhwEQp1fZQoaAZHQI0c1y7wrlNoB03oA2gIR0CSD1o60Y0mdX2UKGgGR0CJE/b2USqVaAdN6ANoCEdAkhIBISUTtnV9lChoBkdAiGSfVy3kP2gHTegDaAhHQJIbFsUIsy11fZQoaAZHQIZSvV09yLhoB03oA2gIR0CSHMjhUBGQdX2UKGgGR0CLvdXOnl4kaAdN6ANoCEdAkijRIe5nUXV9lChoBkdAi90nxjJ+2GgHTegDaAhHQJIrHvUjLSx1fZQoaAZHQI1EznvDxb1oB03oA2gIR0CSNBuYx+KCdX2UKGgGR0CLNyOJ+DvmaAdN6ANoCEdAkjXektVaOnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 18750, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}