--- language: - mn tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: mongolian-davlan-xlm-roberta-base-ner-hrl results: [] --- # mongolian-davlan-xlm-roberta-base-ner-hrl This model is a fine-tuned version of [Davlan/xlm-roberta-base-ner-hrl](https://huggingface.co/Davlan/xlm-roberta-base-ner-hrl) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1166 - Precision: 0.9265 - Recall: 0.9340 - F1: 0.9303 - Accuracy: 0.9798 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.159 | 1.0 | 477 | 0.0792 | 0.9061 | 0.9167 | 0.9114 | 0.9764 | | 0.0754 | 2.0 | 954 | 0.0721 | 0.9142 | 0.9257 | 0.9199 | 0.9783 | | 0.0515 | 3.0 | 1431 | 0.0803 | 0.9189 | 0.9317 | 0.9253 | 0.9787 | | 0.0374 | 4.0 | 1908 | 0.0758 | 0.9295 | 0.9353 | 0.9324 | 0.9804 | | 0.0279 | 5.0 | 2385 | 0.0912 | 0.9267 | 0.9340 | 0.9304 | 0.9796 | | 0.0214 | 6.0 | 2862 | 0.0993 | 0.9256 | 0.9325 | 0.9290 | 0.9796 | | 0.0159 | 7.0 | 3339 | 0.1078 | 0.9237 | 0.9327 | 0.9282 | 0.9789 | | 0.0122 | 8.0 | 3816 | 0.1108 | 0.9259 | 0.9347 | 0.9303 | 0.9797 | | 0.0102 | 9.0 | 4293 | 0.1147 | 0.9263 | 0.9348 | 0.9305 | 0.9797 | | 0.0077 | 10.0 | 4770 | 0.1166 | 0.9265 | 0.9340 | 0.9303 | 0.9798 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3