--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.4593 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.92 --- # ast-finetuned-audioset-10-10-0.4593-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.4593](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.4593) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.3966 - Accuracy: 0.92 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0687 | 1.0 | 113 | 0.6197 | 0.84 | | 0.299 | 2.0 | 226 | 0.5065 | 0.86 | | 0.2634 | 3.0 | 339 | 0.5042 | 0.88 | | 0.0473 | 4.0 | 452 | 0.5413 | 0.88 | | 0.0033 | 5.0 | 565 | 0.3706 | 0.91 | | 0.0003 | 6.0 | 678 | 0.4485 | 0.9 | | 0.2538 | 7.0 | 791 | 0.4006 | 0.9 | | 0.0002 | 8.0 | 904 | 0.3985 | 0.9 | | 0.003 | 9.0 | 1017 | 0.3952 | 0.91 | | 0.0001 | 10.0 | 1130 | 0.3966 | 0.92 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1