File size: 2,295 Bytes
16365c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
architecture:
backbone_dtype: float16
force_embedding_gradients: false
gradient_checkpointing: false
intermediate_dropout: 0.0
pretrained: true
pretrained_weights: ''
augmentation:
random_parent_probability: 0.0
skip_parent_probability: 0.0
token_mask_probability: 0.0
dataset:
add_eos_token_to_answer: true
add_eos_token_to_prompt: true
answer_column: "Answer\r"
data_sample: 1.0
data_sample_choice:
- Train
- Validation
mask_prompt_labels: true
parent_id_column: None
prompt_column:
- Question
text_answer_separator: <|answer|>
text_prompt_start: <|prompt|>
train_dataframe: data/user/Bank-QnA-Repeat/Bank-QnA-Repeat.csv
validation_dataframe: None
validation_size: 0.01
validation_strategy: automatic
environment:
compile_model: false
find_unused_parameters: false
gpus:
- '0'
mixed_precision: true
number_of_workers: 8
seed: -1
trust_remote_code: false
use_fsdp: false
experiment_name: Banking-Chatbot-v1
llm_backbone: h2oai/h2ogpt-oig-oasst1-512-6.9b
logging:
logger: None
neptune_project: ''
number_of_texts: 10
output_directory: output/user/Banking-Chatbot-v1/
prediction:
batch_size_inference: 0
do_sample: false
max_length_inference: 256
metric: BLEU
min_length_inference: 2
num_beams: 2
num_history: 2
repetition_penalty: 1.2
stop_tokens: ''
temperature: 8.0
top_k: 0
top_p: 1.0
problem_type: text_causal_language_modeling
tokenizer:
add_prefix_space: false
add_prompt_answer_tokens: false
max_length: 512
max_length_answer: 256
max_length_prompt: 256
padding_quantile: 1.0
use_fast: true
training:
batch_size: 3
differential_learning_rate: 1.0e-05
differential_learning_rate_layers: []
drop_last_batch: true
epochs: 3
evaluate_before_training: true
evaluation_epochs: 1.0
grad_accumulation: 1
gradient_clip: 0.0
learning_rate: 0.0001
lora: true
lora_alpha: 16
lora_dropout: 0.05
lora_r: 4
lora_target_modules: ''
loss_function: CrossEntropy
optimizer: AdamW
save_best_checkpoint: false
schedule: Cosine
train_validation_data: true
warmup_epochs: 0.05
weight_decay: 0.0
|