--- language: - es license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: Whisper small es - m1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: fleurs type: google/fleurs config: es_419 split: None args: 'config: es_419, split: test, train' metrics: - name: Wer type: wer value: 7.583182873355687 --- # Whisper small es - m1 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset. It achieves the following results on the evaluation set: - Loss: 0.2369 - Wer: 7.5832 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:------:| | 0.6526 | 2.8571 | 500 | 0.1860 | 7.4972 | | 0.321 | 5.7143 | 1000 | 0.2052 | 7.2866 | | 0.0887 | 8.5714 | 1500 | 0.2237 | 7.3639 | | 0.0429 | 11.4286 | 2000 | 0.2327 | 7.5144 | | 0.0285 | 14.2857 | 2500 | 0.2369 | 7.5832 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1