--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-custom-ner results: [] --- # distilbert-base-uncased-finetuned-custom-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7017 - Precision: 0.2292 - Recall: 0.275 - F1: 0.25 - Accuracy: 0.8598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 1 | 0.8583 | 0.1045 | 0.175 | 0.1308 | 0.8084 | | No log | 2.0 | 2 | 0.7963 | 0.1228 | 0.175 | 0.1443 | 0.8271 | | No log | 3.0 | 3 | 0.7497 | 0.1837 | 0.225 | 0.2022 | 0.8505 | | No log | 4.0 | 4 | 0.7179 | 0.1837 | 0.225 | 0.2022 | 0.8505 | | No log | 5.0 | 5 | 0.7017 | 0.2292 | 0.275 | 0.25 | 0.8598 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.14.1 - Tokenizers 0.19.1