--- license: apache-2.0 tags: - generated_from_trainer datasets: - amazon_polarity metrics: - accuracy - f1 model-index: - name: SentimentClassifier results: - task: name: Text Classification type: text-classification dataset: name: amazon_polarity type: amazon_polarity args: amazon_polarity metrics: - name: Accuracy type: accuracy value: 0.9366666666666666 - name: F1 type: f1 value: 0.9364548494983278 --- # SentimentClassifier This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the amazon_polarity dataset. It achieves the following results on the evaluation set: - Loss: 0.3209 - Accuracy: 0.9367 - F1: 0.9365 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1