--- library_name: transformers license: apache-2.0 base_model: elgeish/wav2vec2-large-xlsr-53-arabic tags: - generated_from_trainer metrics: - wer model-index: - name: elgeish-wav2vec2-arabic-fine-tuning_6P results: [] --- # elgeish-wav2vec2-arabic-fine-tuning_6P This model is a fine-tuned version of [elgeish/wav2vec2-large-xlsr-53-arabic](https://huggingface.co/elgeish/wav2vec2-large-xlsr-53-arabic) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4511 - Wer: 0.4936 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 33.2595 | 0.8 | 100 | 10.7960 | 1.0 | | 14.3333 | 1.6 | 200 | 8.1978 | 1.0 | | 4.8209 | 2.4 | 300 | 3.2571 | 1.0 | | 3.1719 | 3.2 | 400 | 3.1181 | 1.0 | | 3.0831 | 4.0 | 500 | 3.0458 | 1.0 | | 2.5752 | 4.8 | 600 | 1.5734 | 1.0 | | 1.4728 | 5.6 | 700 | 1.2424 | 0.8933 | | 1.1457 | 6.4 | 800 | 1.0115 | 0.8471 | | 1.0544 | 7.2 | 900 | 1.1768 | 0.8726 | | 1.065 | 8.0 | 1000 | 1.1300 | 0.8232 | | 0.9797 | 8.8 | 1100 | 1.0768 | 0.8248 | | 0.8787 | 9.6 | 1200 | 1.2050 | 0.8519 | | 0.7859 | 10.4 | 1300 | 0.8281 | 0.7564 | | 0.7123 | 11.2 | 1400 | 0.8351 | 0.7086 | | 0.6248 | 12.0 | 1500 | 0.9252 | 0.7834 | | 0.5965 | 12.8 | 1600 | 0.6848 | 0.6879 | | 0.4854 | 13.6 | 1700 | 0.6451 | 0.6322 | | 0.4371 | 14.4 | 1800 | 0.5714 | 0.6003 | | 0.3767 | 15.2 | 1900 | 0.6853 | 0.6178 | | 0.3472 | 16.0 | 2000 | 0.6118 | 0.6035 | | 0.3105 | 16.8 | 2100 | 0.5476 | 0.5764 | | 0.2706 | 17.6 | 2200 | 0.4950 | 0.5446 | | 0.2378 | 18.4 | 2300 | 0.5300 | 0.5096 | | 0.2028 | 19.2 | 2400 | 0.4686 | 0.5048 | | 0.1851 | 20.0 | 2500 | 0.4511 | 0.4936 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3