--- license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6376 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7703 | 1.0 | 225 | 1.6440 | 0.45 | | 0.9968 | 2.0 | 450 | 1.1709 | 0.6 | | 0.3874 | 3.0 | 675 | 0.7769 | 0.77 | | 0.8894 | 4.0 | 900 | 0.5280 | 0.84 | | 0.1964 | 5.0 | 1125 | 0.6280 | 0.84 | | 0.2273 | 6.0 | 1350 | 0.6823 | 0.82 | | 0.0686 | 7.0 | 1575 | 0.6527 | 0.85 | | 0.1212 | 8.0 | 1800 | 0.5111 | 0.86 | | 0.014 | 9.0 | 2025 | 0.5715 | 0.86 | | 0.012 | 10.0 | 2250 | 0.6376 | 0.85 | ### Framework versions - Transformers 4.39.2 - Pytorch 1.13.0+cu117 - Datasets 2.16.1 - Tokenizers 0.15.1