--- license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-small-id results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: id split: None args: id metrics: - name: Wer type: wer value: 0.05902826117221217 --- # whisper-small-id This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.0878 - Wer: 0.0590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 0.1875 | 0.8457 | 1000 | 0.1400 | 0.1099 | | 0.0852 | 1.6913 | 2000 | 0.1043 | 0.0857 | | 0.0387 | 2.5370 | 3000 | 0.0914 | 0.0757 | | 0.0153 | 3.3827 | 4000 | 0.0860 | 0.0818 | | 0.008 | 4.2283 | 5000 | 0.0878 | 0.0698 | | 0.005 | 5.0740 | 6000 | 0.0878 | 0.0745 | | 0.0033 | 5.9197 | 7000 | 0.0834 | 0.0651 | | 0.0029 | 6.7653 | 8000 | 0.0815 | 0.0627 | | 0.0014 | 7.6110 | 9000 | 0.0853 | 0.0627 | | 0.0013 | 8.4567 | 10000 | 0.0861 | 0.0641 | | 0.0005 | 9.3023 | 11000 | 0.0857 | 0.0633 | | 0.0005 | 10.1480 | 12000 | 0.0856 | 0.0620 | | 0.0007 | 10.9937 | 13000 | 0.0866 | 0.0605 | | 0.0005 | 11.8393 | 14000 | 0.0871 | 0.0614 | | 0.0002 | 12.6850 | 15000 | 0.0850 | 0.0596 | | 0.0004 | 13.5307 | 16000 | 0.0849 | 0.0600 | | 0.0001 | 14.3763 | 17000 | 0.0868 | 0.0592 | | 0.0002 | 15.2220 | 18000 | 0.0873 | 0.0593 | | 0.0001 | 16.0677 | 19000 | 0.0875 | 0.0585 | | 0.0001 | 16.9133 | 20000 | 0.0878 | 0.0590 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1