from transformers import SpeechEncoderDecoderModel, AutoFeatureExtractor, AutoTokenizer, Wav2Vec2Processor # checkpoints to leverage encoder_id = "facebook/wav2vec2-base" decoder_id = "facebook/bart-base" # load and save speech-encoder-decoder model # set some hyper-parameters for training and evaluation model = SpeechEncoderDecoderModel.from_encoder_decoder_pretrained(encoder_id, decoder_id, encoder_add_adapter=True, encoder_feat_proj_dropout=0.0, encoder_layerdrop=0.0, max_length=200, num_beams=5) model.config.decoder_start_token_id = model.decoder.config.bos_token_id model.config.pad_token_id = model.decoder.config.pad_token_id model.config.eos_token_id = model.decoder.config.eos_token_id model.save_pretrained("./") # load and save processor feature_extractor = AutoFeatureExtractor.from_pretrained(encoder_id) tokenizer = AutoTokenizer.from_pretrained(decoder_id) processor = Wav2Vec2Processor(feature_extractor, tokenizer) processor.save_pretrained("./")