File size: 14,960 Bytes
b8a8a54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
#!/usr/bin/env python3
"""
Fixed Custom OCR Model based on PaliGemma-3B
Handles device placement issues and provides better OCR performance
"""

import torch
import torch.nn as nn
from transformers import (
    PaliGemmaForConditionalGeneration, 
    PaliGemmaProcessor,
    AutoTokenizer
)
from PIL import Image
import warnings
warnings.filterwarnings("ignore")

class FixedPaliGemmaOCR(nn.Module):
    """
    Fixed Custom OCR model based on PaliGemma-3B with proper device handling.
    """
    
    def __init__(self, model_name="google/paligemma-3b-pt-224"):
        super().__init__()
        
        print(f"πŸš€ Initializing Fixed PaliGemma OCR Model...")
        print(f"πŸ“¦ Base model: {model_name}")
        
        # Determine best device and dtype
        if torch.cuda.is_available():
            self.device = "cuda"
            self.torch_dtype = torch.float16
            print("πŸ”§ Using CUDA with float16")
        else:
            self.device = "cpu"
            self.torch_dtype = torch.float32
            print("πŸ”§ Using CPU with float32")
        
        # Load model components
        try:
            print("πŸ“₯ Loading PaliGemma model...")
            self.base_model = PaliGemmaForConditionalGeneration.from_pretrained(
                model_name,
                torch_dtype=self.torch_dtype,
                trust_remote_code=True
            )
            
            print("πŸ“₯ Loading processor...")
            self.processor = PaliGemmaProcessor.from_pretrained(model_name)
            
            print("πŸ“₯ Loading tokenizer...")
            self.tokenizer = AutoTokenizer.from_pretrained(model_name)
            
            # Move model to device
            self.base_model = self.base_model.to(self.device)
            
            print("βœ… All components loaded successfully")
            
        except Exception as e:
            print(f"❌ Failed to load PaliGemma model: {e}")
            raise
        
        # Get model dimensions
        self.hidden_size = self.base_model.config.text_config.hidden_size
        self.vocab_size = self.base_model.config.text_config.vocab_size
        
        # Simple confidence estimation (no custom heads to avoid device issues)
        print(f"πŸ”§ Model ready:")
        print(f"   - Device: {self.device}")
        print(f"   - Hidden size: {self.hidden_size}")
        print(f"   - Vocab size: {self.vocab_size}")
        print(f"   - Parameters: ~3B")
        
    def generate_ocr_text(self, image, prompt="<image>Extract all text from this image:", max_length=512):
        """
        Generate OCR text from image with proper device handling.
        
        Args:
            image: PIL Image or path to image
            prompt: Text prompt for OCR task (must include <image> token)
            max_length: Maximum length of generated text
            
        Returns:
            dict: Contains extracted text, confidence, and metadata
        """
        
        if isinstance(image, str):
            image = Image.open(image).convert('RGB')
        elif not isinstance(image, Image.Image):
            raise ValueError("Image must be PIL Image or path string")
        
        try:
            # Method 1: Standard PaliGemma OCR
            result = self._extract_with_paligemma(image, prompt, max_length)
            result['method'] = 'paligemma_standard'
            return result
            
        except Exception as e:
            print(f"⚠️ Standard method failed: {e}")
            
            try:
                # Method 2: Fallback with different prompts
                result = self._extract_with_fallback(image, max_length)
                result['method'] = 'paligemma_fallback'
                return result
                
            except Exception as e2:
                print(f"⚠️ Fallback method failed: {e2}")
                
                # Method 3: Error handling
                return {
                    'text': "Error: Could not extract text from image",
                    'confidence': 0.0,
                    'quality': 'error',
                    'method': 'error',
                    'error': str(e2)
                }
    
    def _extract_with_paligemma(self, image, prompt, max_length):
        """Extract text using PaliGemma's standard approach."""
        
        try:
            # Prepare inputs with proper prompt format
            if "<image>" not in prompt:
                prompt = f"<image>{prompt}"
            
            inputs = self.processor(
                text=prompt,
                images=image,
                return_tensors="pt"
            )
            
            # Move all tensor inputs to device
            for key in inputs:
                if isinstance(inputs[key], torch.Tensor):
                    inputs[key] = inputs[key].to(self.device)
            
            # Generate with proper settings
            with torch.no_grad():
                generated_ids = self.base_model.generate(
                    **inputs,
                    max_length=max_length,
                    do_sample=False,
                    num_beams=1,
                    pad_token_id=self.tokenizer.eos_token_id,
                    eos_token_id=self.tokenizer.eos_token_id
                )
            
            # Decode generated text
            generated_text = self.processor.batch_decode(
                generated_ids, 
                skip_special_tokens=True
            )[0]
            
            # Clean up the text
            extracted_text = self._clean_generated_text(generated_text, prompt)
            
            # Estimate confidence based on output quality
            confidence = self._estimate_confidence(extracted_text)
            
            return {
                'text': extracted_text,
                'confidence': confidence,
                'quality': self._assess_quality(extracted_text),
                'raw_output': generated_text
            }
            
        except Exception as e:
            print(f"❌ PaliGemma extraction failed: {e}")
            raise
    
    def _extract_with_fallback(self, image, max_length):
        """Fallback extraction with different prompts."""
        
        fallback_prompts = [
            "<image>What text is visible in this image?",
            "<image>Read all the text in this image.",
            "<image>OCR this image.",
            "<image>Transcribe the text.",
            "<image>"
        ]
        
        for prompt in fallback_prompts:
            try:
                inputs = self.processor(
                    text=prompt,
                    images=image,
                    return_tensors="pt"
                )
                
                # Move inputs to device
                for key in inputs:
                    if isinstance(inputs[key], torch.Tensor):
                        inputs[key] = inputs[key].to(self.device)
                
                with torch.no_grad():
                    generated_ids = self.base_model.generate(
                        **inputs,
                        max_length=max_length,
                        do_sample=True,
                        temperature=0.1,
                        top_p=0.9,
                        num_beams=1,
                        pad_token_id=self.tokenizer.eos_token_id
                    )
                
                generated_text = self.processor.batch_decode(
                    generated_ids, 
                    skip_special_tokens=True
                )[0]
                
                extracted_text = self._clean_generated_text(generated_text, prompt)
                
                if len(extracted_text.strip()) > 0:
                    return {
                        'text': extracted_text,
                        'confidence': 0.7,
                        'quality': 'good',
                        'raw_output': generated_text
                    }
                    
            except Exception as e:
                print(f"⚠️ Fallback prompt '{prompt}' failed: {e}")
                continue
        
        # All fallbacks failed
        return {
            'text': "",
            'confidence': 0.0,
            'quality': 'poor',
            'raw_output': ""
        }
    
    def _clean_generated_text(self, generated_text, prompt):
        """Clean up generated text by removing prompt and artifacts."""
        
        # Remove the prompt from generated text
        clean_prompt = prompt.replace("<image>", "").strip()
        if clean_prompt and clean_prompt in generated_text:
            extracted_text = generated_text.replace(clean_prompt, "").strip()
        else:
            extracted_text = generated_text.strip()
        
        # Remove common artifacts
        artifacts = [
            "The image shows",
            "The text in the image says",
            "The image contains the text",
            "I can see the text",
            "The text reads"
        ]
        
        for artifact in artifacts:
            if extracted_text.lower().startswith(artifact.lower()):
                extracted_text = extracted_text[len(artifact):].strip()
                if extracted_text.startswith(":"):
                    extracted_text = extracted_text[1:].strip()
                if extracted_text.startswith('"') and extracted_text.endswith('"'):
                    extracted_text = extracted_text[1:-1].strip()
        
        return extracted_text
    
    def _estimate_confidence(self, text):
        """Estimate confidence based on text characteristics."""
        
        if not text or len(text.strip()) == 0:
            return 0.0
        
        # Base confidence
        confidence = 0.5
        
        # Length bonus
        if len(text) > 10:
            confidence += 0.2
        if len(text) > 50:
            confidence += 0.1
        
        # Character variety bonus
        if any(c.isalpha() for c in text):
            confidence += 0.1
        if any(c.isdigit() for c in text):
            confidence += 0.05
        
        # Penalty for very short or suspicious text
        if len(text.strip()) < 3:
            confidence *= 0.5
        
        return min(0.95, confidence)
    
    def _assess_quality(self, text):
        """Assess text quality."""
        
        if not text or len(text.strip()) == 0:
            return 'poor'
        
        if len(text.strip()) < 5:
            return 'poor'
        elif len(text.strip()) < 20:
            return 'fair'
        elif len(text.strip()) < 100:
            return 'good'
        else:
            return 'excellent'
    
    def batch_ocr(self, images, prompt="<image>Extract all text from this image:", max_length=512):
        """Process multiple images efficiently."""
        
        results = []
        
        for i, image in enumerate(images):
            print(f"πŸ“„ Processing image {i+1}/{len(images)}...")
            
            try:
                result = self.generate_ocr_text(image, prompt, max_length)
                results.append(result)
                
                print(f"   βœ… Success: {len(result['text'])} characters extracted")
                
            except Exception as e:
                print(f"   ❌ Error: {e}")
                results.append({
                    'text': f"Error processing image {i+1}",
                    'confidence': 0.0,
                    'quality': 'error',
                    'method': 'error',
                    'error': str(e)
                })
        
        return results
    
    def get_model_info(self):
        """Get comprehensive model information."""
        
        return {
            'base_model': 'PaliGemma-3B',
            'device': self.device,
            'dtype': str(self.torch_dtype),
            'hidden_size': self.hidden_size,
            'vocab_size': self.vocab_size,
            'parameters': '~3B',
            'optimized_for': 'OCR and Document Understanding',
            'supported_languages': '100+',
            'features': [
                'Multi-language OCR',
                'Document understanding',
                'Robust error handling',
                'Batch processing',
                'Confidence estimation'
            ]
        }


def main():
    """Test the Fixed PaliGemma OCR Model."""
    
    print("πŸš€ Testing Fixed PaliGemma OCR Model")
    print("=" * 50)
    
    try:
        # Initialize model
        model = FixedPaliGemmaOCR()
        
        # Print model info
        info = model.get_model_info()
        print(f"\nπŸ“Š Model Information:")
        for key, value in info.items():
            if isinstance(value, list):
                print(f"   {key}:")
                for item in value:
                    print(f"     - {item}")
            else:
                print(f"   {key}: {value}")
        
        # Create test image
        print(f"\nπŸ§ͺ Creating test image...")
        from PIL import Image, ImageDraw, ImageFont
        
        img = Image.new('RGB', (500, 300), color='white')
        draw = ImageDraw.Draw(img)
        
        try:
            font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 20)
            title_font = ImageFont.truetype("/System/Library/Fonts/Arial.ttf", 28)
        except:
            font = ImageFont.load_default()
            title_font = font
        
        # Add various text elements
        draw.text((20, 30), "INVOICE #12345", fill='black', font=title_font)
        draw.text((20, 80), "Date: January 15, 2024", fill='black', font=font)
        draw.text((20, 110), "Customer: John Smith", fill='blue', font=font)
        draw.text((20, 140), "Amount: $1,234.56", fill='red', font=font)
        draw.text((20, 170), "Description: Professional Services", fill='black', font=font)
        draw.text((20, 200), "Tax (10%): $123.46", fill='black', font=font)
        draw.text((20, 230), "Total: $1,358.02", fill='black', font=title_font)
        
        img.save("test_paligemma_ocr.png")
        print("βœ… Test image created: test_paligemma_ocr.png")
        
        # Test OCR
        print(f"\nπŸ” Testing OCR extraction...")
        result = model.generate_ocr_text(img)
        
        print(f"\nπŸ“ OCR Results:")
        print(f"   Text: {result['text']}")
        print(f"   Confidence: {result['confidence']:.3f}")
        print(f"   Quality: {result['quality']}")
        print(f"   Method: {result['method']}")
        
        if len(result['text']) > 0:
            print(f"\nβœ… PaliGemma OCR Model is working perfectly!")
        else:
            print(f"\n⚠️ OCR extracted no text - may need adjustment")
        
        return model
        
    except Exception as e:
        print(f"❌ Error testing model: {e}")
        import traceback
        traceback.print_exc()
        return None


if __name__ == "__main__":
    model = main()