File size: 2,981 Bytes
5fc43a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9edbe83
5fc43a2
 
 
 
 
 
 
 
 
 
 
 
 
9edbe83
5fc43a2
 
 
 
 
 
 
 
 
 
 
 
 
9edbe83
5fc43a2
 
 
 
 
 
 
 
 
 
 
 
 
9edbe83
5fc43a2
 
 
 
 
 
 
 
5c310a0
5fc43a2
 
 
 
 
a3404b9
5fc43a2
a3404b9
 
 
 
 
5fc43a2
a3404b9
 
512d511
3a631ed
a3404b9
 
 
 
 
5fc43a2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
language:
- en
datasets:
- mozilla-foundation/common_voice_13_0
- facebook/voxpopuli
- LIUM/tedlium
- librispeech_asr
- fisher_corpus
- Switchboard-1
- WSJ-0
metrics:
- wer
pipeline_tag: automatic-speech-recognition
model-index:
- name: tbd
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: other
      split: test
      args:
        language: en
    metrics:
    - type: wer
      value: 2.5
      name: Test WER
    - type: wer
      value: 5.6
      name: Test WER
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: tedlium-v3
      type: LIUM/tedlium
      config: release1
      split: test
      args:
        language: en
    metrics:
    - type: wer
      value: 6.3
      name: Test WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Vox Populi
      type: facebook/voxpopuli
      config: en
      split: test
      args:
        language: en
    metrics:
    - type: wer
      value: 7.3
      name: Test WER
  - task:
      type: Automatic Speech Recognition
      name: automatic-speech-recognition
    dataset:
      name: Mozilla Common Voice 13.0
      type: mozilla-foundation/common_voice_13_0
      config: en
      split: test
      args:
        language: en
    metrics:
    - type: wer
      value: 12.1
      name: Test WER
---
# EBranchRegulaFormer
This is a  **174M encoder-decoder Ebranchformer model** trained with an intermediate regularization technique on 6,000 hours of open-source English data. 
It achieves Word Error Rates (WERs) comparable to `openai/whisper-medium.en` across multiple datasets with just 1/4 of the parameters. 

Architecture details, training hyperparameters, and a description of the proposed technique will be added soon.

*Disclaimer: The model currently hallucinates on segments containing silence only, as it was previously not trained on such data. The fix will be added soon.*

The model can be used with the [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
class to transcribe audio files of arbitrary length.

```python
from transformers import pipeline

model_id = "BUT-FIT/EBranchRegulaFormer-medium"
pipe = pipeline("automatic-speech-recognition", model=model_id, feature_extractor=model_id, trust_remote_code=True)
# In newer versions of transformers (>4.31.0), there is a bug in the pipeline inference type.
# The warning can be ignored.
pipe.type = "seq2seq"

# Standard greedy decoding
result = pipe("audio.wav")

# Beam search decoding with joint CTC-autoregressive scorer
generation_config = pipe.model.generation_config
generation_config.ctc_weight = 0.3
generation_config.num_beams = 5
generation_config.ctc_margin = 0
result = pipe("audio.wav")
```