DeCRED-small / multi_head_gpt2.py
Lakoc's picture
Upload JointCTCAttentionEncoderDecoder
c0f8a54 verified
raw
history blame
6.93 kB
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
class GPT2MultiHeadConfig(GPT2Config):
model_type = "gpt2-multi-head"
def __init__(
self,
head_locations=None,
head_weights=None,
tie_additional_weights=False,
average_logits=False,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.head_locations = head_locations
self.head_weights = head_weights
self.tie_additional_weights = tie_additional_weights
self.average_logits = average_logits
class GPT2LMMultiHeadModel(GPT2LMHeadModel):
config_class = GPT2MultiHeadConfig
def __init__(self, config: GPT2MultiHeadConfig):
super().__init__(config)
if config.head_locations is not None:
if not len(config.head_locations) + 1 == len(config.head_weights):
raise ValueError("The number of head locations should be equal to the number of head weights minus 1")
self.head_locations = config.head_locations
self.additional_lm_heads = nn.ModuleList(
[nn.Linear(config.n_embd, config.vocab_size, bias=False) for _ in config.head_locations]
)
self.head_weights = config.head_weights
else:
self.head_locations = []
self.additional_lm_heads = nn.ModuleList([])
self.head_weights = [1.0]
self.post_init()
def tie_weights(self):
"""
Tie the weights between the input embeddings and the output embeddings.
If the `torchscript` flag is set in the configuration, can't handle parameter sharing so we are cloning the
weights instead.
"""
super().tie_weights()
if hasattr(self, "additional_lm_heads") and getattr(self.config, "tie_additional_weights", False):
input_embeddings = self.get_input_embeddings()
for classifier in self.additional_lm_heads:
if self.config.torchscript:
classifier.weight = nn.Parameter(input_embeddings.weight.clone())
else:
classifier.weight = input_embeddings.weight
if getattr(classifier, "bias", None) is not None:
classifier.bias.data = nn.functional.pad(
classifier.bias.data,
(
0,
classifier.weight.shape[0] - classifier.bias.shape[0],
),
"constant",
0,
)
if hasattr(classifier, "out_features") and hasattr(input_embeddings, "num_embeddings"):
classifier.out_features = input_embeddings.num_embeddings
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
attention_mask: Optional[torch.FloatTensor] = None,
token_type_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
head_mask: Optional[torch.FloatTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
"""
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
transformer_outputs = self.transformer(
input_ids,
past_key_values=past_key_values,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=True,
return_dict=return_dict,
)
hidden_states = transformer_outputs[2]
# Set device for model parallelism
if self.model_parallel:
torch.cuda.set_device(self.transformer.first_device)
hidden_states = hidden_states.to(self.lm_head.weight.device)
lm_logits = self.lm_head(hidden_states[-1])
loss = None
if labels is not None:
loss = torch.tensor(0.0, device=hidden_states[-1].device)
lm_logits = []
loss_fct = CrossEntropyLoss()
for index, lm_head, lm_weight in zip(
[*self.head_locations, -1],
[*self.additional_lm_heads, self.lm_head],
self.head_weights,
):
lm_logits.append(lm_head(hidden_states[index]))
# Shift so that tokens < n predict n
shift_logits = lm_logits[-1][..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
loss += lm_weight * loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
if self.config.average_logits:
lm_logits = (torch.vstack(lm_logits) * torch.tensor(self.head_weights)).mean(dim=0)
else:
lm_logits = lm_logits[-1]
if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output
return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
cross_attentions=transformer_outputs.cross_attentions,
)