--- license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: convnextv2-tiny-1k-224-finetuned-two-four results: [] --- # convnextv2-tiny-1k-224-finetuned-two-four This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5662 - Accuracy: 0.7352 - F1: 0.7327 - Precision: 0.7370 - Recall: 0.7352 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6983 | 0.9655 | 14 | 0.6720 | 0.5974 | 0.5694 | 0.6054 | 0.5974 | | 0.6804 | 2.0 | 29 | 0.6609 | 0.6324 | 0.6190 | 0.6374 | 0.6324 | | 0.6796 | 2.9655 | 43 | 0.6634 | 0.6083 | 0.6084 | 0.6084 | 0.6083 | | 0.6886 | 4.0 | 58 | 0.6547 | 0.6171 | 0.6104 | 0.6161 | 0.6171 | | 0.6577 | 4.9655 | 72 | 0.6577 | 0.6127 | 0.5724 | 0.6407 | 0.6127 | | 0.6439 | 6.0 | 87 | 0.6196 | 0.6477 | 0.6339 | 0.6559 | 0.6477 | | 0.602 | 6.9655 | 101 | 0.6125 | 0.6652 | 0.6585 | 0.6986 | 0.6652 | | 0.5974 | 8.0 | 116 | 0.6224 | 0.6696 | 0.6601 | 0.7141 | 0.6696 | | 0.5841 | 8.9655 | 130 | 0.5800 | 0.7002 | 0.7005 | 0.7011 | 0.7002 | | 0.581 | 10.0 | 145 | 0.5822 | 0.7265 | 0.7262 | 0.7262 | 0.7265 | | 0.5716 | 10.9655 | 159 | 0.5812 | 0.7068 | 0.7035 | 0.7083 | 0.7068 | | 0.5611 | 12.0 | 174 | 0.5778 | 0.7221 | 0.7150 | 0.7319 | 0.7221 | | 0.5411 | 12.9655 | 188 | 0.5652 | 0.7352 | 0.7341 | 0.7351 | 0.7352 | | 0.5361 | 14.0 | 203 | 0.5670 | 0.7374 | 0.7347 | 0.7395 | 0.7374 | | 0.5416 | 14.4828 | 210 | 0.5662 | 0.7352 | 0.7327 | 0.7370 | 0.7352 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1