--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224-pt22k-ft22k tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: beit-base-patch16-224-pt22k-ft22k-finetuned-tekno24 results: [] --- # beit-base-patch16-224-pt22k-ft22k-finetuned-tekno24 This model is a fine-tuned version of [microsoft/beit-base-patch16-224-pt22k-ft22k](https://huggingface.co/microsoft/beit-base-patch16-224-pt22k-ft22k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0072 - Accuracy: 0.5785 - F1: 0.5643 - Precision: 0.5602 - Recall: 0.5785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.4008 | 0.9855 | 17 | 1.2967 | 0.4059 | 0.3220 | 0.3791 | 0.4059 | | 1.2363 | 1.9710 | 34 | 1.1309 | 0.5032 | 0.4187 | 0.4871 | 0.5032 | | 1.1716 | 2.9565 | 51 | 1.0983 | 0.5161 | 0.4385 | 0.4610 | 0.5161 | | 1.1479 | 4.0 | 69 | 1.0550 | 0.5409 | 0.5014 | 0.5067 | 0.5409 | | 1.1058 | 4.9855 | 86 | 1.0397 | 0.5500 | 0.4942 | 0.5208 | 0.5500 | | 1.0656 | 5.9710 | 103 | 1.0558 | 0.5556 | 0.5396 | 0.5486 | 0.5556 | | 1.0328 | 6.9565 | 120 | 1.0216 | 0.5730 | 0.5465 | 0.5513 | 0.5730 | | 1.0116 | 8.0 | 138 | 1.0469 | 0.5363 | 0.5187 | 0.5119 | 0.5363 | | 1.012 | 8.9855 | 155 | 1.0216 | 0.5629 | 0.5226 | 0.5344 | 0.5629 | | 1.0076 | 9.9710 | 172 | 1.0186 | 0.5675 | 0.5275 | 0.5379 | 0.5675 | | 0.9714 | 10.9565 | 189 | 1.0205 | 0.5638 | 0.5499 | 0.5549 | 0.5638 | | 0.9843 | 12.0 | 207 | 1.0117 | 0.5657 | 0.5488 | 0.5495 | 0.5657 | | 0.9427 | 12.9855 | 224 | 1.0072 | 0.5785 | 0.5643 | 0.5602 | 0.5785 | | 0.9268 | 13.9710 | 241 | 1.0068 | 0.5785 | 0.5652 | 0.5621 | 0.5785 | | 0.9525 | 14.7826 | 255 | 1.0073 | 0.5785 | 0.5641 | 0.5641 | 0.5785 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1 ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/c2oZGFL696PUZQSsirk0-.png) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/662eb39820de310d1558dd55/hSI48y0RC_62394MbCCRl.png)