--- license: apache-2.0 base_model: pszemraj/verysmol_llama-v10-rw3m_dd tags: - generated_from_trainer metrics: - accuracy model-index: - name: verysmol_llama-v10-rw3m_dd-knowledge-inoc-concat-v1-vN results: [] --- # verysmol_llama-v10-rw3m_dd-knowledge-inoc-concat-v1-vN This model is a fine-tuned version of [pszemraj/verysmol_llama-v10-rw3m_dd](https://huggingface.co/pszemraj/verysmol_llama-v10-rw3m_dd) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.8876 - Accuracy: 0.4502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00014 - train_batch_size: 16 - eval_batch_size: 16 - seed: 17514 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-06 - lr_scheduler_type: inverse_sqrt - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 3.0681 | 0.03 | 150 | 3.0689 | 0.4259 | | 3.0113 | 0.07 | 300 | 3.0433 | 0.4278 | | 2.9468 | 0.1 | 450 | 3.0362 | 0.4288 | | 3.0162 | 0.13 | 600 | 3.0148 | 0.4326 | | 2.9531 | 0.17 | 750 | 3.0012 | 0.4341 | | 2.9282 | 0.2 | 900 | 2.9923 | 0.4358 | | 2.9485 | 0.23 | 1050 | 2.9845 | 0.4357 | | 2.9365 | 0.27 | 1200 | 2.9749 | 0.4375 | | 2.8875 | 0.3 | 1350 | 2.9652 | 0.4391 | | 2.8874 | 0.33 | 1500 | 2.9619 | 0.4402 | | 2.8733 | 0.37 | 1650 | 2.9574 | 0.4408 | | 2.8541 | 0.4 | 1800 | 2.9536 | 0.4403 | | 2.8958 | 0.43 | 1950 | 2.9491 | 0.4414 | | 2.8404 | 0.47 | 2100 | 2.9434 | 0.4427 | | 2.8635 | 0.5 | 2250 | 2.9404 | 0.4425 | | 2.9031 | 0.53 | 2400 | 2.9369 | 0.4428 | | 2.8237 | 0.57 | 2550 | 2.9330 | 0.4440 | | 2.832 | 0.6 | 2700 | 2.9318 | 0.4444 | | 2.8566 | 0.63 | 2850 | 2.9305 | 0.4450 | | 2.8817 | 0.67 | 3000 | 2.9286 | 0.4443 | | 2.8733 | 0.7 | 3150 | 2.9268 | 0.4442 | | 2.8009 | 0.73 | 3300 | 2.9227 | 0.4457 | | 2.9292 | 0.77 | 3450 | 2.9229 | 0.4450 | | 2.8562 | 0.8 | 3600 | 2.9193 | 0.4456 | | 2.8441 | 0.83 | 3750 | 2.9188 | 0.4460 | | 2.904 | 0.87 | 3900 | 2.9171 | 0.4458 | | 2.857 | 0.9 | 4050 | 2.9140 | 0.4461 | | 2.8344 | 0.93 | 4200 | 2.9134 | 0.4467 | | 2.8382 | 0.97 | 4350 | 2.9122 | 0.4467 | | 2.8227 | 1.0 | 4500 | 2.9104 | 0.4468 | | 2.8121 | 1.03 | 4650 | 2.9099 | 0.4472 | | 2.8127 | 1.07 | 4800 | 2.9082 | 0.4473 | | 2.8013 | 1.1 | 4950 | 2.9084 | 0.4478 | | 2.7983 | 1.14 | 5100 | 2.9069 | 0.4474 | | 2.811 | 1.17 | 5250 | 2.9076 | 0.4480 | | 2.7807 | 1.2 | 5400 | 2.9065 | 0.4471 | | 2.8512 | 1.24 | 5550 | 2.9056 | 0.4483 | | 2.8146 | 1.27 | 5700 | 2.9049 | 0.4478 | | 2.8101 | 1.3 | 5850 | 2.9024 | 0.4482 | | 2.7968 | 1.34 | 6000 | 2.9005 | 0.4484 | | 2.8197 | 1.37 | 6150 | 2.9001 | 0.4481 | | 2.8035 | 1.4 | 6300 | 2.8997 | 0.4488 | | 2.7905 | 1.44 | 6450 | 2.8996 | 0.4488 | | 2.8239 | 1.47 | 6600 | 2.8982 | 0.4487 | | 2.8579 | 1.5 | 6750 | 2.8975 | 0.4492 | | 2.7996 | 1.54 | 6900 | 2.8960 | 0.4492 | | 2.8337 | 1.57 | 7050 | 2.8984 | 0.4490 | | 2.8087 | 1.6 | 7200 | 2.8959 | 0.4492 | | 2.8066 | 1.64 | 7350 | 2.8952 | 0.4499 | | 2.7991 | 1.67 | 7500 | 2.8950 | 0.4492 | | 2.8215 | 1.7 | 7650 | 2.8943 | 0.4496 | | 2.7714 | 1.74 | 7800 | 2.8914 | 0.4501 | | 2.8132 | 1.77 | 7950 | 2.8913 | 0.4500 | | 2.8505 | 1.8 | 8100 | 2.8906 | 0.4502 | | 2.8294 | 1.84 | 8250 | 2.8901 | 0.4502 | | 2.7977 | 1.87 | 8400 | 2.8891 | 0.4499 | | 2.7501 | 1.9 | 8550 | 2.8878 | 0.4505 | | 2.8038 | 1.94 | 8700 | 2.8883 | 0.4504 | | 2.7547 | 1.97 | 8850 | 2.8876 | 0.4502 | ### Framework versions - Transformers 4.33.3 - Pytorch 2.2.0.dev20231017+cu121 - Datasets 2.14.5 - Tokenizers 0.13.3