--- library_name: transformers language: - en license: apache-2.0 base_model: BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1 tags: - gqa - t5 - instruct datasets: - pszemraj/infinity-instruct-7m-T2T_en pipeline_tag: text2text-generation --- # tFINE-680m-e32-d16-infinity_instruct-L2 this is an instruction-tuned version of a pretrained t5 with GQA. ## Model description This model is a fine-tuned version of [BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L1) on the pszemraj/infinity-instruct-7m-T2T_en dataset (config `deduped-L2`). It achieves the following results on the evaluation set: - Loss: 1.3139 - Num Input Tokens Seen: 361724696 ## usage prerequisite: you need to have [t5-gqa fork of transformers installed](https://huggingface.co/BEE-spoke-data/tFINE-680m-e32-d16-gqa-flan#testing), and accelerate. ```py from transformers import pipeline pipe = pipeline( "text2text-generation", model="BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2", device_map="auto", ) prompt = "Write me a python fn that demonstrates an advanced sorting algorithm" res = pipe( prompt, max_new_tokens=384, num_beams=4, early_stopping=True, repetition_penalty=1.1 ) print(res[0]["generated_text"]) ``` ## Quick eval Quick eval for: `BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2` hf (pretrained=BEE-spoke-data/tFINE-680m-e32-d16-infinity_instruct-L2,trust_remote_code=True,dtype=bfloat16,trust_remote_code=True), gen_kwargs: (None), limit: None, num_fewshot: None, batch_size: 8 | Tasks |Version|Filter|n-shot| Metric | |Value | |Stderr| |-------------|------:|------|-----:|--------|---|-----:|---|------| |boolq | 2|none | 0|acc |↑ |0.6364|± |0.0084| |openbookqa | 1|none | 0|acc |↑ |0.1480|± |0.0159| | | |none | 0|acc_norm|↑ |0.2860|± |0.0202| |piqa | 1|none | 0|acc |↑ |0.6083|± |0.0114| | | |none | 0|acc_norm|↑ |0.6132|± |0.0114| |social_iqa | 0|none | 0|acc |↑ |0.3854|± |0.0110| |tinyArc | 0|none | 25|acc_norm|↑ |0.3122|± | N/A| |tinyHellaswag| 0|none | 10|acc_norm|↑ |0.3356|± | N/A| |tinyMMLU | 0|none | 0|acc_norm|↑ |0.2793|± | N/A| |winogrande | 1|none | 0|acc |↑ |0.5201|± |0.0140| ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2.5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 17868 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - total_eval_batch_size: 8 - optimizer: Use paged_ademamix_32bit and the args are: No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_ratio: 0.02 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Input Tokens Seen | |:-------------:|:------:|:----:|:---------------:|:-----------------:| | 1.4008 | 0.2534 | 1000 | 1.4020 | 91375832 | | 1.3456 | 0.5068 | 2000 | 1.3669 | 182939052 | | 1.3437 | 0.7602 | 3000 | 1.3378 | 274855796 |