--- license: apache-2.0 datasets: - BAAI/OPI language: - en pipeline_tag: text-generation tags: - Life Science - AI4Science - Biology - Protein - LLM - Instruction base_model: facebook/galactica-6.7b --- ![OPI_logo](demo_figures/OPI_logo.png) # Model Card of OPI-Galactica-6.7B OPI-Galactica-6.7B was fine-tuned from the Galactica-6.7B model using the complete OPI dataset (i.e.,[OPI_full_1.61M.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json)). For more details of training and testing, please visit [https://github.com/baaihealth/opi](https://github.com/baaihealth/opi). ![Overview](demo_figures/OPI_experiment_outline.png) # Evaluation of OPI-Galactica-6.7B model on 9 tasks Each testing result is derived from the Galactica-6.7B model that has been fine-tuned using [OPI_full_1.61M.json](https://huggingface.co/datasets/BAAI/OPI/blob/main/OPI_DATA/OPI_full_1.61M_train.json) and subsequently evaluated on the respective testing set for each specific task.
Task Type Task Name Testing file Accuracy Precision Recall F1 Rouge-L
Sequence Understanding EC Number Prediction (split100) CLEAN_EC_number_new_test - 0.2700 0.2663 0.2596 -
CLEAN_EC_number_price_test - 0.0268 0.0268 0.0268 -
Fold Type Prediction fold_type_test_Fold_Holdout 0.0808 - - - -
fold_type_test_Superfamily_Holdout 0.1348 - - - -
fold_type_test_Family_Holdout 0.4854 - - - -
Subcellular Localization Prediction subcell_loc_test 0.7771 - - - -
Annotation Prediction Function Keywords Prediction CASPSimilarSeq_keywords_test - 0.8120 0.7360 0.7643 -
Function Keywords Prediction IDFilterSeq_keywords_test - 0.8377 0.8019 0.8070 -
Function Keywords Prediction UniProtSeq_keywords_test - 0.8596 0.8196 0.8276 -
Gene Ontology (GO) Terms Prediction CASPSimilarSeq_go_terms_test - 0.7613 0.7492 0.7476 -
Gene Ontology (GO) Terms Prediction IDFilterSeq_go_terms_test - 0.7404 0.7274 0.7207 -
Gene Ontology (GO) Terms Prediction UniProtSeq_go_terms_test - 0.7638 0.7373 0.7358 -
Function Description Prediction CASPSimilarSeq_function_test - - - - 0.7430
Function Description Prediction IDFilterSeq_function_test - - - - 0.7014
Function Description Prediction UniProtSeq_function_test - - - - 0.7133
Knowledge Mining Tissue Location Prediction from Gene Symbol gene_symbol_to_tissue_test - 0.3917 0.9077 0.5303 -
Cancer Prediction from Gene Symbol gene_symbol_to_cancer_test - 0.3555 0.3189 0.3229 -
Cancer Prediction from Gene Name gene_name_to_cancer_test - 0.2728 0.2554 0.2533 -
# Prediction comparison with SOTA mdoels ![model_compare](model_compare/task1_EC_number.png) ![model_compare](model_compare/task2_fold_type.png) ![model_compare](model_compare/task3_subcell_loc.png) ![model_compare](model_compare/task4_keywords.png) ![model_compare](model_compare/task5_GO.png) ![model_compare](model_compare/task6_function.png) ![model_compare](model_compare/task7_gsymbol2tissue.png) ![model_compare](model_compare/task8_gsymbol2cancer.png) ![model_compare](model_compare/task9_gname2cancer.png) # Demo We use the [FastChat](https://github.com/lm-sys/FastChat) platform to visually demonstrate the ability of OPI-Galactica-6.7B model on various evaluation tasks. ![OPI Demo](./demo_figures/OPI_demo.gif)