# -------------------------------------------------------- # Adapted from https://github.com/microsoft/unilm/tree/master/beit # -------------------------------------------------------- import os from functools import partial import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.checkpoint import checkpoint try: from timm.models.layers import drop_path, to_2tuple except: from timm.layers import drop_path, to_2tuple try: import xformers.ops as xops except ImportError: xops = None print("Please 'pip install xformers'") class PatchDropout(nn.Module): """ https://arxiv.org/abs/2212.00794 """ def __init__(self, prob, exclude_first_token=True): super().__init__() assert 0 <= prob < 1. self.prob = prob self.exclude_first_token = exclude_first_token # exclude CLS token print(f"os.getenv('RoPE')={os.getenv('RoPE')}") def forward(self, x): if not self.training or self.prob == 0.: return x if self.exclude_first_token: cls_tokens, x = x[:, :1], x[:, 1:] else: cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) batch = x.size()[0] num_tokens = x.size()[1] batch_indices = torch.arange(batch) batch_indices = batch_indices[..., None] keep_prob = 1 - self.prob num_patches_keep = max(1, int(num_tokens * keep_prob)) rand = torch.randn(batch, num_tokens) patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices x = x[batch_indices, patch_indices_keep] if self.exclude_first_token: x = torch.cat((cls_tokens, x), dim=1) if self.training and os.getenv('RoPE') == '1': return x, patch_indices_keep return x class DropPath(nn.Module): """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks). """ def __init__(self, drop_prob=None): super(DropPath, self).__init__() self.drop_prob = drop_prob def forward(self, x): return drop_path(x, self.drop_prob, self.training) def extra_repr(self) -> str: return 'p={}'.format(self.drop_prob) class Mlp(nn.Module): def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, drop=0., subln=False, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) # x = self.drop(x) # commit this for the orignal BERT implement x = self.ffn_ln(x) x = self.fc2(x) x = self.drop(x) return x class SwiGLU(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0., norm_layer=nn.LayerNorm, subln=False): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.w1 = nn.Linear(in_features, hidden_features) self.w2 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() self.w3 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x1 = self.w1(x) x2 = self.w2(x) hidden = self.act(x1) * x2 x = self.ffn_ln(hidden) x = self.w3(x) x = self.drop(x) return x class Attention(nn.Module): def __init__( self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., window_size=None, attn_head_dim=None, xattn=False, rope=None, subln=False, norm_layer=nn.LayerNorm): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = qk_scale or head_dim ** -0.5 self.subln = subln if self.subln: self.q_proj = nn.Linear(dim, all_head_dim, bias=False) self.k_proj = nn.Linear(dim, all_head_dim, bias=False) self.v_proj = nn.Linear(dim, all_head_dim, bias=False) else: if qkv_bias: self.qkv = nn.Linear(dim, all_head_dim * 3, bias=True) else: self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) # if qkv_bias: # self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) # self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) # else: # self.q_bias = None # self.v_bias = None self.window_size = None self.relative_position_bias_table = None self.relative_position_index = None self.attn_drop = nn.Dropout(attn_drop) self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() # self.proj = nn.Linear(all_head_dim, all_head_dim) self.proj = nn.Linear(all_head_dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.xattn = xattn self.xattn_drop = attn_drop self.rope = rope def forward(self, x, rel_pos_bias=None, attn_mask=None): B, N, C = x.shape if self.subln: q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) k = F.linear(input=x, weight=self.k_proj.weight, bias=None) v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) else: # qkv_bias = None # if self.q_bias is not None: # qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias)) # qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) qkv = self.qkv(x) qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) # 3, B, num_heads, N, C q, k, v = qkv[0], qkv[1], qkv[2] if self.rope: q_t = q[:, :, 1:, :] ro_q_t = self.rope(q_t) q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) k_t = k[:, :, 1:, :] ro_k_t = self.rope(k_t) k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) if self.xattn: q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C k = k.permute(0, 2, 1, 3) v = v.permute(0, 2, 1, 3) x = xops.memory_efficient_attention( q, k, v, p=self.xattn_drop, scale=self.scale, ) x = x.reshape(B, N, -1) x = self.inner_attn_ln(x) x = self.proj(x) x = self.proj_drop(x) else: q = q * self.scale attn = (q @ k.transpose(-2, -1)) if self.relative_position_bias_table is not None: relative_position_bias = \ self.relative_position_bias_table[self.relative_position_index.view(-1)].view( self.window_size[0] * self.window_size[1] + 1, self.window_size[0] * self.window_size[1] + 1, -1) # Wh*Ww,Wh*Ww,nH relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) if rel_pos_bias is not None: attn = attn + rel_pos_bias.type_as(attn) if attn_mask is not None: attn_mask = attn_mask.bool() attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, -1) x = self.inner_attn_ln(x) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm, window_size=None, attn_head_dim=None, xattn=False, rope=None, postnorm=False, subln=False, naiveswiglu=False): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim, xattn=xattn, rope=rope, subln=subln, norm_layer=norm_layer) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) if naiveswiglu: self.mlp = SwiGLU( in_features=dim, hidden_features=mlp_hidden_dim, subln=subln, norm_layer=norm_layer, ) else: self.mlp = Mlp( in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, subln=subln, drop=drop ) if init_values is not None and init_values > 0: self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True) else: self.gamma_1, self.gamma_2 = None, None self.postnorm = postnorm def forward(self, x, rel_pos_bias=None, attn_mask=None): if self.gamma_1 is None: if self.postnorm: x = x + self.drop_path(self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) x = x + self.drop_path(self.norm2(self.mlp(x))) else: x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) x = x + self.drop_path(self.mlp(self.norm2(x))) else: if self.postnorm: x = x + self.drop_path(self.gamma_1 * self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask))) x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) else: x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x, **kwargs): B, C, H, W = x.shape # FIXME look at relaxing size constraints assert H == self.img_size[0] and W == self.img_size[1], \ f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." x = self.proj(x).flatten(2).transpose(1, 2) return x class EVAVisionTransformer(nn.Module): """ Vision Transformer with support for patch or hybrid CNN input stage """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, patch_dropout=0., use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False, rope=False, use_mean_pooling=True, init_scale=0.001, grad_checkpointing=False, xattn=False, postnorm=False, pt_hw_seq_len=16, intp_freq=False, naiveswiglu=False, subln=False, ): super().__init__() self.image_size = img_size # self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) num_patches = self.patch_embed.num_patches self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if use_abs_pos_emb: self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) else: self.pos_embed = None self.pos_drop = nn.Dropout(p=drop_rate) self.rel_pos_bias = None self.rope = None self.naiveswiglu = naiveswiglu dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.use_rel_pos_bias = use_rel_pos_bias self.blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, xattn=xattn, rope=self.rope, postnorm=postnorm, subln=subln, naiveswiglu=naiveswiglu) for i in range(depth)]) # setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0. else nn.Identity() self.grad_checkpointing = grad_checkpointing def get_num_layers(self): return len(self.blocks) def lock(self, unlocked_groups=0, freeze_bn_stats=False): assert unlocked_groups == 0, 'partial locking not currently supported for this model' for param in self.parameters(): param.requires_grad = False @torch.jit.ignore def set_grad_checkpointing(self, enable=True): self.grad_checkpointing = enable @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def forward_features(self, x): x = self.patch_embed(x) batch_size, seq_len, _ = x.size() cls_tokens = self.cls_token.expand(batch_size, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) if self.pos_embed is not None: x = x + self.pos_embed x = self.pos_drop(x) # a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in if os.getenv('RoPE') == '1': if self.training and not isinstance(self.patch_dropout, nn.Identity): x, patch_indices_keep = self.patch_dropout(x) self.rope.forward = partial(self.rope.forward, patch_indices_keep=patch_indices_keep) else: self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) x = self.patch_dropout(x) else: x = self.patch_dropout(x) rel_pos_bias = None for blk in self.blocks: if self.grad_checkpointing: x = checkpoint(blk, x, (rel_pos_bias,)) else: x = blk(x, rel_pos_bias=rel_pos_bias) return x def forward(self, x): """ :return: forward_features function returns raw features of ViT, forward with return_all_features returns normalized features of ViT :param x: :param return_all_features: """ features = self.forward_features(x) # [B, n_patch, C] return features