--- license: other --- ## Introduction Aquila is a large language model independently developed by BAAI. Building upon the Aquila model, we continued pre-training, SFT (Supervised Fine-Tuning), and RL (Reinforcement Learning) through a multi-stage training process, ultimately resulting in the AquilaMed-RL model. This model possesses professional capabilities in the medical field and demonstrates a significant win rate when evaluated against annotated data using the GPT-4 model. The AquilaMed-RL model can perform medical triage, medication inquiries, and general Q&A. We will open-source the SFT data and RL data required for training the model. Additionally, we will release a technical report detailing our methods in developing the model for the medical field, thereby promoting the development of the open-source community. ## Model Details The training process of the model is described as follows. For more information, please refer to our technical report. https://github.com/FlagAI-Open/industry-application/blob/main/Aquila_med_tech-report.pdf ![pipeline](./img/pipline_2.jpg) ## Evaluation The subjective and objective scores are as follows。 subjective: Using GPT-4 for evaluation, the win rates of our model compared to the reference answers in the annotated validation dataset are as follows. Objective:use MMLU / C-EVAL / CMB-exam to evaluate the model ![pipeline](./img/eval-result-med.png) ## usage Once you have downloaded the model locally, you can use the following code for inference. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig model_dir = "xxx" tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True) config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_dir, config=config, trust_remote_code=True ) model.cuda() model.eval() template = "<|im_start|>system\nYou are a helpful assistant in medical domain.<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n" text = "我肚子疼怎么办?" item_instruction = template.format(question=text) inputs = tokenizer(item_instruction, return_tensors="pt").to("cuda") input_ids = inputs["input_ids"] prompt_length = len(input_ids[0]) generate_output = model.generate( input_ids=input_ids, do_sample=False, max_length=1024, return_dict_in_generate=True ) response_ids = generate_output.sequences[0][prompt_length:] predicts = tokenizer.decode( response_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True ) print("predict:", predicts) """ predict: 肚子疼可能是多种原因引起的,例如消化不良、胃炎、胃溃疡、胆囊炎、胰腺炎、肠道感染等。如果疼痛持续或加重,或者伴随有呕吐、腹泻、发热等症状,建议尽快就医。如果疼痛轻微,可以尝试以下方法缓解: 1. 饮食调整:避免油腻、辛辣、刺激性食物,多喝水,多吃易消化的食物,如米粥、面条、饼干等。 2. 休息:避免剧烈运动,保持充足的睡眠。 3. 热敷:用热水袋或毛巾敷在肚子上,可以缓解疼痛。 4. 药物:可以尝试一些非处方药,如布洛芬、阿司匹林等,但请务必在医生的指导下使用。 如果疼痛持续或加重,或者伴随有其他症状,建议尽快就医。 希望我的回答对您有所帮助。如果您还有其他问题,欢迎随时向我提问。 """ ``` ## License Aquila series open-source model is licensed under [BAAI Aquila Model Licence Agreement](https://huggingface.co/BAAI/AquilaMed-RL/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf) ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{Aqulia-Med LLM, title={Aqulia-Med LLM: Pioneering Full-Process Open-Source Medical Language Models}, year={2024} } ```