--- license: other --- ![Aquila_logo](./log.jpeg)

English 简体中文 |

GithubWeChat

# 悟道·天鹰(Aquila2) 我们开源了我们的 **Aquila2** 系列,现在包括基础语言模型 **Aquila2-7B** 和 **Aquila2-34B** ,对话模型 **AquilaChat2-7B** 和 **AquilaChat2-34B**,长文本对话模型**AquilaChat2-7B-16k** 和 **AquilaChat2-34B-16k** 基于AquilaChat2-34B初始版本的开发经验,我们对AquilaChat2-34B进行了全面升级并发布1.2版本。评测结果显示, AquilaChat2-34B-V1.2 模型在主观评测的8个二级能力维度上,均接近或超过 GPT3.5 水平。 悟道 · 天鹰 Aquila 模型的更多细节将在官方技术报告中呈现。请关注官方渠道更新。 注:发现在预训练任务数据集中存在GSM8K测试数据泄露问题,从评测结果中删除GSM8K的评估结果。 经彻查分析,数据泄露发生于某多次合作数据团队所推荐的数学数据集A(超过2百万样本),其包含未经过处理的GSM8K测试集(1319样本)。团队只进行了常规去重和质量检测,未就是否混入GSM8K测试数据进行额外过滤检查而导致失误,实为工作中的疏漏。 团队一直严格遵循训练数据不能包含测试数据的工作原则。吸取本次由于对外部数据来源没有进行清查而造成失误的教训,我们正在对2万亿token 的全量数据进行各种测试数据集的排查,目前MMLU、CMMLU等测试数据并未存在预训练数据中。 ## 快速开始使用 AquilaChat2-34B ## 使用方式/How to use ### 1. 推理/Inference ```python from transformers import AutoTokenizer, AutoModelForCausalLM import torch device = torch.device("cuda") model_info = "BAAI/AquilaChat2-34B" tokenizer = AutoTokenizer.from_pretrained(model_info, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_info, trust_remote_code=True) model.eval() model.to(device) text = "请给出10个要到北京旅游的理由。" tokens = tokenizer.encode_plus(text)['input_ids'] tokens = torch.tensor(tokens)[None,].to(device) stop_tokens = ["###", "[UNK]", ""] with torch.no_grad(): out = model.generate(tokens, do_sample=True, max_length=512, eos_token_id=100007, bad_words_ids=[[tokenizer.encode(token)[0] for token in stop_tokens]])[0] out = tokenizer.decode(out.cpu().numpy().tolist()) print(out) ``` ## 证书/License Aquila2系列开源模型使用 [智源Aquila系列模型许可协议](https://huggingface.co/BAAI/AquilaChat2-34B/blob/main/BAAI-Aquila-Model-License%20-Agreement.pdf)