from dataclasses import dataclass import torch from torch.nn import functional as F import inspect from transformers import GPT2LMHeadModel import torch.nn as nn #------------------------------------------ class CausalSelfAttention(nn.Module): def __init__(self, config): super().__init__() # Projection of key, query, value for all heads in a batch self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd) # Output projection self.c_proj = nn.Linear(config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = True # Regularization self.n_head = config.n_head self.n_embd = config.n_embd # Mask for attention self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)) .view(1, 1, config.block_size, config.block_size)) def forward(self, x): B, T, C = x.size() # batch_size, sequence_length, embedding dimensionality (n_embed) # Calculate query, key, values for all heads in batch and move head forward to be the batch dim qkv = self.c_attn(x) q, k, v = qkv.split(self.n_embd, dim=2) k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs) # Attention (materializes the large (T,T) matrix for all the queries and keys) y = F.scaled_dot_product_attention(q, k, v, is_causal=True) y = y.transpose(1, 2).contiguous().view(B, T, C) # Re-assemble all head outputs side by side # Output projection y = self.c_proj(y) return y class MLP(nn.Module): def __init__(self, config): super().__init__() self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd) self.gelu = nn.GELU(approximate='tanh') # Approximation for historic reasons self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd) self.c_proj.NANOGPT_SCALE_INIT = True def forward(self, x): x = self.c_fc(x) x = self.gelu(x) x = self.c_proj(x) return x class Block(nn.Module): def __init__(self, config): super().__init__() self.ln_1 = nn.LayerNorm(config.n_embd) self.attn = CausalSelfAttention(config) self.ln_2 = nn.LayerNorm(config.n_embd) self.mlp = MLP(config) def forward(self, x): x = x + self.attn(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x @dataclass class GPTConfig: block_size: int = 1024 # Max sequence length vocab_size: int = 50257 # Number of tokens n_layer: int = 12 # Number of layers n_head: int = 12 # Number of heads n_embd: int = 768 # Embedding dimension class GPT(nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = nn.ModuleDict(dict( wte = nn.Embedding(config.vocab_size, config.n_embd), wpe = nn.Embedding(config.block_size, config.n_embd), h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]), ln_f = nn.LayerNorm(config.n_embd), )) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # Weight sharing scheme self.transformer.wte.weight = self.lm_head.weight # Initialization self.apply(self._init_weights) def _init_weights(self, module): if isinstance(module, nn.Linear): std = 0.02 if hasattr(module, 'NANOGPT_SCALE_INIT'): std = (2 * self.config.n_layer) ** -0.5 # 2 times as each layer has attention and MLP torch.nn.init.normal_(module.weight, mean=0.0, std=std) if module.bias is not None: torch.nn.init.zeros_(module.bias) elif isinstance(module, nn.Embedding): torch.nn.init.normal_(module.weight, mean=0.0, std=0.02) # Word embedding will be initialized twice def forward(self, idx, target = None): # idx of shape (B, T) B, T = idx.size() assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}" # Forward the token and position embedding pos = torch.arange(0, T, dtype = torch.long, device=idx.device) # (T) pos_emb = self.transformer.wpe(pos) # (T, C) tok_emb = self.transformer.wte(idx) # (B, T, C) x = tok_emb + pos_emb # (B, T, C) # Forward the block for transformer for block in self.transformer.h: x = block(x) # Forward the final layer norm and classifier x = self.transformer.ln_f(x) logits = self.lm_head(x) # (B, T, vocab_size) # Compute the loss loss = None if target is not None: loss = F.cross_entropy(logits.view(-1, logits.size(-1)), target.view(-1)) return logits, loss @classmethod def from_pretrained(cls, model_type): """ Loads pretrained GPT2 model from HuggingFace """ assert model_type in {"gpt2", "gpt2-medium", "gpt2-large", "gpt2-xl"} print(f"Loading {model_type} model...") config_args = { "gpt2": dict(n_layer = 12, n_head = 12, n_embd = 768), # 124M "gpt2-medium": dict(n_layer = 24, n_head = 16, n_embd = 1024), # 350M "gpt2-large": dict(n_layer = 36, n_head = 20, n_embd = 1280), # 774M "gpt2-xl": dict(n_layer = 48, n_head = 25, n_embd = 1600), # 1558M }[model_type] config_args["vocab_size"] = 50257 # Always for GPT2 checkpoints config_args["block_size"] = 1024 # Always for GPT2 checkpoints config = GPTConfig(**config_args) model = GPT(config) sd = model.state_dict() sd_keys = sd.keys() sd_keys = [k for k in sd_keys if not k.endswith(".attn.bias")] # Discard this mask # Initialize Hugging Face model model_hf = GPT2LMHeadModel.from_pretrained(model_type) sd_hf = model_hf.state_dict() sd_keys_hf = sd_hf.keys() # Copy while ensuring all of the parameters are aligned and match in names and types sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.masked_bias")] # Ignore these, just a buffer sd_keys_hf = [k for k in sd_keys_hf if not k.endswith(".attn.bias")] # Same, just the mask (buffer) transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight'] # Basically the OpenAI checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear # This means that we have to transpose these weights when we import them assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}" for k in sd_keys_hf: if any(k.endswith(w) for w in transposed): # Special treatment for the Conv1D weights we need to transpose assert sd_hf[k].shape[::-1] == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k].t()) else: # Vanilla copy over the other parameters assert sd_hf[k].shape == sd[k].shape with torch.no_grad(): sd[k].copy_(sd_hf[k]) return model def configure_optimizers(self, weight_decay, learning_rate, betas, device_type): # Start with all of the candidate parameters param_dict = {pn: p for pn, p in self.named_parameters()} # Filter out those that do not require grad param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad} # Create optim groups. Any parameters that is 2D will be weight decayed, otherwise no. # i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't. decay_params = [p for n, p in param_dict.items() if p.dim() >= 2] nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2] optim_groups = [ {'params': decay_params, 'weight_decay': weight_decay}, {'params': nodecay_params, 'weight_decay': 0.0} ] num_decay_params = sum(p.numel() for p in decay_params) num_nodecay_params = sum(p.numel() for p in nodecay_params) print(f"Number of decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters") print(f"Number of non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters") # Create AdamW optimizer and use the fused version if it is available fused_available = 'fused' in inspect.signature(torch.optim.AdamW).parameters use_fused = fused_available and device_type == 'cuda' extra_args = dict(fused=True) if use_fused else dict() optimizer = torch.optim.AdamW(optim_groups, lr=learning_rate, betas=betas, **extra_args) print(f"Using fused AdamW: {use_fused}") return optimizer @torch.no_grad() def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # If the sequence context is growing too long, crop it at block_size idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # Forward the model to get the logits for the index in the sequence logits, _ = self(idx_cond) # Pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # Optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # Apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # Sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # Append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx