""" --------------------------------------------------------------------------------------------------------- SciGlass Database is obtained from : https://github.com/epam/SciGlass We thank the repository owner for publically releasing the dataset. The license for the same is provided below. --------------------------------------------------------------------------------------------------------- ODC Open Database License (ODbL) Copyright (c) 2019 EPAM Systems Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --------------------------------------------------------------------------------------------------------- """ from collections import defaultdict import os import pickle import re import numpy as np from tqdm import tqdm table_dir = '../../data' train_data = pickle.load(open(os.path.join(table_dir, 'train_data_new.pkl'), 'rb')) pii_glass_ids = pickle.load(open(os.path.join(table_dir, 'sciglass_pii_gids.pkl'), 'rb')) train_data = sorted(train_data, key=lambda x: (x['pii'], x['t_idx'])) pii_tables = defaultdict(list) for c in train_data: pii_tables[c['pii']].append(c) def non_zero_cols(df): return df.T[df.astype(bool).sum(axis=0) > 0].index.to_list() composition = { 'mol': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_mol.pkl'), 'rb')), 'wt': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_wt.pkl'), 'rb')), } gids = dict() avail_glass_ids = set() for k in composition.keys(): composition[k] = composition[k][(composition[k].sum(axis=1).round() == 100)] gids[k] = set(composition[k].index) & set(pii_glass_ids['GLASNO']) composition[k] = composition[k].loc[gids[k]].sort_index() composition[k] = composition[k][non_zero_cols(composition[k])] avail_glass_ids |= gids[k] print(len(avail_glass_ids)) split_pii_t_idxs = pickle.load(open(os.path.join(table_dir, 'train_val_test_split.pkl'), 'rb')) piis = list(set(pii for pii, _ in split_pii_t_idxs['train'])) print(len(piis)) num = r'(\d*\.\d+|\d+)' comp_vars = ['x', 'y', 'z'] var = r'(' + r'|'.join(comp_vars) + r')' enum = r'((' + num + var + r'+)|' + num + r'|' + var + r')' expr = enum + r'(\s*[\+\-/]\s*' + enum + r')*' expr = r'((' + expr + r')|(\(' + expr + r'\))|(' + num + r'\s*%))' def x_pattern_1(constituents): sub_pat = expr + r'?\s*' + r'(' + r'|'.join(constituents) + r')' pat = re.compile(r'(' + sub_pat + r'(\s*[-*\:\,+]?\s*' + sub_pat + r')+)') return re.compile(sub_pat), pat def x_parse_1(s, sub_pat, pat): for comp in re.findall(pat, s): nums_found = 0 for l in re.findall(sub_pat, comp[0]): if l[0]: nums_found += 1 if nums_found == 0: continue return True return False def x_pattern_2(constituents): sub_pat = r'(' + r'|'.join(constituents) + r')\s*' + expr + r'?' pat = re.compile(r'(' + sub_pat + r'(\s*[-*\:\,+]?\s*' + sub_pat + r')+)') return re.compile(sub_pat), pat def x_parse_2(s, sub_pat, pat): for comp in re.findall(pat, s): nums_found = 0 for l in re.findall(sub_pat, comp[0]): if l[1]: nums_found += 1 if nums_found == 0: continue return True return False def x_pattern_3(constituents): sub_pat_1 = r'(' + r'|'.join(constituents) + r')\s*' + expr + r'?' sub_pat_2 = r'(' + sub_pat_1 + r'(\s*[-*\:\,+]?\s*' + sub_pat_1 + r')*)' sub_pat_2_ = sub_pat_1 + r'?(\s*[-*\:\,+]?\s*' + sub_pat_1 + r'?)*' sub_pat_3 = r'((' + sub_pat_2_ + r'|\(\s*' + sub_pat_2_ + r'\s*\)|\[\s*' + sub_pat_2_ + r'\s*\])\s*' + expr + r')' pat = re.compile(r'(' + sub_pat_3 + r'(\s*[-*\:\,+]?\s*' + sub_pat_3 + r')+)') sub_pat = [sub_pat_1, sub_pat_2, sub_pat_3] sub_pat = [re.compile(x) for x in sub_pat] return sub_pat, pat def x_parse_3(s, sub_pat, pat): if ('(' not in s or ')' not in s) and ('[' not in s or ']' not in s): return False for comp in re.findall(pat, s): comp_s = re.sub(expr, ' ', comp[0]) if ('(' not in comp_s or ')' not in comp_s) and ('[' not in comp_s or ']' not in comp_s): continue return True return False def x_pattern_4(constituents): sub_pat_1 = expr + r'?\s*(' + r'|'.join(constituents) + r')' sub_pat_2 = r'(' + sub_pat_1 + r'(\s*[-*\:\,+]?\s*' + sub_pat_1 + r')*)' sub_pat_3 = r'((' + sub_pat_2 + r'|\(\s*' + sub_pat_2 + r'\s*\)|\[\s*' + sub_pat_2 + r'\s*\])\s*' + expr + r')' pat = re.compile(r'(' + sub_pat_3 + r'(\s*[-*\:\,+]?\s*' + sub_pat_3 + r')+)') sub_pat = [sub_pat_1, sub_pat_2, sub_pat_3] sub_pat = [re.compile(x) for x in sub_pat] return sub_pat, pat def x_parse_4(s, sub_pat, pat): if ('(' not in s or ')' not in s) and ('[' not in s or ']' not in s): return False for comp in re.findall(pat, s): comp_s = re.sub(expr, ' ', comp[0]) if ('(' not in comp_s or ')' not in comp_s) and ('[' not in comp_s or ']' not in comp_s): continue return True return False def x_pattern_5(constituents): sub_pat_1 = r'(' + r'|'.join(constituents) + r')\s*' + expr + r'?' sub_pat_2 = r'(' + sub_pat_1 + r'(\s*[-*\:\,+]?\s*' + sub_pat_1 + r')*)' sub_pat_2_ = r'(' + sub_pat_1 + r'?(\s*[-*\:\,+]?\s*' + sub_pat_1 + r'?)*)' sub_pat_3 = r'(' + expr + '\s*(' + sub_pat_2_ + r'|\(\s*' + sub_pat_2_ + r'\s*\)|\[\s*' + sub_pat_2_ + '\s*\]))' pat = re.compile(r'(' + sub_pat_3 + r'(\s*[-*\:\,+]?\s*' + sub_pat_3 + r')+)') sub_pat = [sub_pat_1, sub_pat_2, sub_pat_3] sub_pat = [re.compile(x) for x in sub_pat] return sub_pat, pat def x_parse_5(s, sub_pat, pat): if ('(' not in s or ')' not in s) and ('[' not in s or ']' not in s): return False for comp in re.findall(pat, s): comp_s = re.sub(expr, ' ', comp[0]) if ('(' not in comp_s or ')' not in comp_s) and ('[' not in comp_s or ']' not in comp_s): continue return True return False def x_pattern_6(constituents): sub_pat_1 = expr + r'?\s*(' + r'|'.join(constituents) + r')' sub_pat_2 = r'(' + sub_pat_1 + r'(\s*[-*\:\,+]?\s*' + sub_pat_1 + r')*)' sub_pat_3 = r'(' + expr + '\s*(' + sub_pat_2 + r'|\(\s*' + sub_pat_2 + r'\s*\)|\[\s*' + sub_pat_2 + '\s*\]))' pat = re.compile(r'(' + sub_pat_3 + r'(\s*[-*\:\,+]?\s*' + sub_pat_3 + r')+)') sub_pat = [sub_pat_1, sub_pat_2, sub_pat_3] sub_pat = [re.compile(x) for x in sub_pat] return sub_pat, pat def x_parse_6(s, sub_pat, pat): if ('(' not in s or ')' not in s) and ('[' not in s or ']' not in s): return False for comp in re.findall(pat, s): comp_s = re.sub(expr, ' ', comp[0]) if ('(' not in comp_s or ')' not in comp_s) and ('[' not in comp_s or ']' not in comp_s): continue return True return False patterns = [x_pattern_1, x_pattern_2, x_pattern_3, x_pattern_4, x_pattern_5, x_pattern_6] parses = [x_parse_1, x_parse_2, x_parse_3, x_parse_4, x_parse_5, x_parse_6] def get_cons_pattern(gids, compositions): constituents = non_zero_cols(compositions.loc[gids]) assert all(['-' not in c for c in constituents]) assert len(gids) == 0 or len(constituents) > 0 constituents = set(constituents) - set(['RO', 'R2O', 'R2O3']) constituents = sorted(constituents, key=lambda x: -len(x)) constituents = [c.replace('(', '\(').replace(')', '\)') for c in constituents] return constituents, re.compile('|'.join(constituents), re.IGNORECASE) def check_single_cell_comps(act_table, sub_pats, pats): res = [] for r in act_table: res_r = [] for s in r: res_c = False for sub_pat, pat, parse in zip(sub_pats, pats, parses): if parse(s.strip().replace('\n', ' '), sub_pat, pat): res_c = True break res_r.append(res_c) res.append(res_r) return res def identify_good_tables(pii): xml_tables = pii_tables[pii] for table in xml_tables: table['regex_table'] = 0 glass_ids = set(pii_glass_ids.loc[pii_glass_ids['PII'] == pii, 'GLASNO']) & avail_glass_ids if len(glass_ids) == 0: return constituents, _ = get_cons_pattern(glass_ids & gids['mol'], composition['mol']) if len(constituents) == 0: return sub_pats, pats = [], [] for pattern, parse in zip(patterns, parses): sub_pat, pat = pattern(constituents) sub_pats.append(sub_pat) pats.append(pat) for table in xml_tables: scc_cell_labels = check_single_cell_comps(table['act_table'], sub_pats, pats) if np.array(scc_cell_labels).sum() > 0: table['regex_table'] = 1 table['comp_table'] = True for pii in tqdm(piis): identify_good_tables(pii) pickle.dump(train_data, open(os.path.join(table_dir, 'train_data_scc.pkl'), 'wb'))