""" --------------------------------------------------------------------------------------------------------- SciGlass Database is obtained from : https://github.com/epam/SciGlass We thank the repository owner for publically releasing the dataset. The license for the same is provided below. --------------------------------------------------------------------------------------------------------- ODC Open Database License (ODbL) Copyright (c) 2019 EPAM Systems Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --------------------------------------------------------------------------------------------------------- """ from collections import defaultdict, Counter import os import pickle import re import sys sys.path.append('..') from tqdm import tqdm from sympy import solve, sympify from regex_lib import * table_dir = '../../data' train_data = pickle.load(open(os.path.join(table_dir, 'train_data_mcc_ci.pkl'), 'rb')) train_data = [c for c in train_data if c['regex_table'] == 0 and not c['comp_table']] train_data_dict = {(c['pii'], c['t_idx']): c for c in train_data} train_piis = list(set(pii for pii, _ in train_data_dict)) data = pickle.load(open(os.path.join(table_dir, 'train_val_test_paper_data.pkl'), 'rb')) for pii in data.keys(): data[pii]['tables_captions'] = '' for c in train_data: data[c['pii']]['tables_captions'] += c['caption'].replace('\n', ' ') + '\n' pii_glass_ids = pickle.load(open(os.path.join(table_dir, 'sciglass_pii_gids.pkl'), 'rb')) def non_zero_cols(df): return df.T[df.astype(bool).sum(axis=0) > 0].index.to_list() composition = { 'mol': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_mol.pkl'), 'rb')), 'wt': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_wt.pkl'), 'rb')), } gids = dict() avail_glass_ids = set() for k in composition.keys(): composition[k] = composition[k][(composition[k].sum(axis=1).round() == 100)] gids[k] = set(composition[k].index) & set(pii_glass_ids['GLASNO']) composition[k] = composition[k].loc[gids[k]].sort_index() composition[k] = composition[k][non_zero_cols(composition[k])] avail_glass_ids |= gids[k] extracted_regex = defaultdict(dict) pii_constituents = dict() def extract_regex_from_paper_text(pii): glass_ids = set(pii_glass_ids.loc[pii_glass_ids['PII'] == pii, 'GLASNO']) & avail_glass_ids if len(glass_ids) == 0: return constituents = set() for k in composition.keys(): constituents |= set(non_zero_cols(composition[k].loc[glass_ids & gids[k]])) constituents -= set(['RO', 'RO2', 'R2O', 'R2O3']) pii_constituents[pii] = constituents if len(constituents) == 0: return for section, text in data[pii].items(): extracted_regex[pii][section] = parse_composition(text, constituents) for pii in tqdm(train_piis): extract_regex_from_paper_text(pii) regex_piis = list(extracted_regex.keys()) for pii in regex_piis: remove = True for section in extracted_regex[pii].keys(): extracted_regex[pii][section] = [c for c in extracted_regex[pii][section] if len(c[0]) > 1] if len(extracted_regex[pii][section]) > 0: remove = False if remove: extracted_regex.pop(pii) regex_piis = list(extracted_regex.keys()) for pii in regex_piis: remove = True for l in extracted_regex[pii].values(): for x in l: if type(x[0][0][1]) == str: remove = False if remove: extracted_regex.pop(pii) regex_piis = list(extracted_regex.keys()) pii_vars = defaultdict(set) for pii in regex_piis: l = [] for ll in extracted_regex[pii].values(): l += ll for c in l: assert type(c[0]) == list for x in c[0]: if type(x[1]) == str: for var in comp_vars: if var in x[1]: pii_vars[pii].add(var) var_regex_piis = dict() for pii in regex_piis: l = [] for ll in extracted_regex[pii].values(): l += ll l = [c[0] for c in l] var_regex_piis[pii] = [] for c in l: var_comp = False for x in c: if type(x[1]) == str: var_comp = True break if not var_comp: continue match = False for cc, _ in var_regex_piis[pii]: if dict(c) == dict(cc): match = True break if match: continue vars = set() for x in c: if type(x[1]) == str: for var in comp_vars: if var in x[1]: vars.add(var) var_regex_piis[pii].append((c, vars)) def viewcomp(df): return df.T[df.astype(bool).sum(axis=0) > 0].T num_pattern = re.compile(r'-?\d+\.\d+|-?\d+') def get_cons_pattern(pii): comp_list = sorted(list(pii_constituents[pii]), key=lambda x: -len(x)) comp_list = [c.replace('(', '\(').replace(')', '\)') for c in comp_list] return re.compile('|'.join(comp_list)) def get_var_pattern(pii): return re.compile(r'(?:^|[^\w-])(' + '|'.join(sorted(pii_vars[pii])) + r')') def get_comp_and_nums(table, cons_pattern, var_pattern): comps, nums = [], [] for r in table: r_comps, r_nums = [], [] for cell in r: found_constituents = list(set(re.findall(cons_pattern, cell))) subs_cell = re.sub(cons_pattern, ' ', cell) found_vars = list(set(m.group(1) for m in re.finditer(var_pattern, subs_cell))) subs_cell = re.sub(var_pattern, ' ', subs_cell).lower() r_comps.append(found_constituents + found_vars) if found_constituents: cell_nums = re.findall(num_pattern, subs_cell) r_nums.append(list(map(float, cell_nums))) else: m = re.search(r'[a-z]', subs_cell) end_idx = m.start() if m is not None else len(subs_cell) cell_nums = re.findall(num_pattern, subs_cell[:end_idx]) r_nums.append(list(map(float, cell_nums))) comps.append(r_comps) nums.append(r_nums) return comps, nums tables_comp, tables_nums = dict(), dict() for c in train_data: if c['pii'] not in regex_piis: continue k = (c['pii'], c['t_idx']) tables_comp[k], tables_nums[k] = get_comp_and_nums(c['act_table'], get_cons_pattern(c['pii']), get_var_pattern(c['pii'])) def match_num_in_table(pii_t_idx, num, regex_comp, regex_vars, db_comps, tol=1e-2): if num < 0: return -1 regex_var = list(regex_vars)[0] subs_comp = dict() for comp, perc in regex_comp: try: subs_comp[comp] = eval_expr(perc.replace(regex_var, str(num))) if type(perc) == str else perc except ZeroDivisionError: return -1 assert len(subs_comp) == len(regex_comp) if any(v < 0 for v in subs_comp.values()): return -1 subs_comp = {k: v for k, v in subs_comp.items() if v > 0} for i in range(len(db_comps)): db_comp = dict(db_comps.iloc[i]) db_comp = {k: v for k, v in db_comp.items() if v > 0} if set(subs_comp.keys()) != set(db_comp.keys()): continue match = True for k in db_comp.keys(): if db_comp[k] * (1 - tol) <= subs_comp[k] <= db_comp[k] * (1 + tol): pass else: match = False break if match: return i return -1 def get_table_edges_for_regex_comp(pii_t_idx, regex_comp, regex_vars, db_comps): comps, nums = tables_comp[pii_t_idx], tables_nums[pii_t_idx] comp_locations = defaultdict(list) for i, r in enumerate(comps): for j, c in enumerate(r): for comp in c: comp_locations[comp].append((i, j)) regex_var = list(regex_vars)[0] edges = [] if regex_var in comp_locations: var_locs = comp_locations[regex_var] src = defaultdict(list) possible_num_locs = set() for x, y in var_locs: for i in range(x, len(comps)): possible_num_locs.add((i, y)) src[(i, y)].append((x, y)) for j in range(y, len(comps[0])): possible_num_locs.add((x, j)) src[(x, j)].append((x, y)) for x, y in possible_num_locs: if len(nums[x][y]) == 0: continue num = nums[x][y][0] if num < 0: continue if match_num_in_table(pii_t_idx, num, regex_comp, regex_vars, db_comps) != -1: for s in src[(x, y)]: edges.append((s, (x, y))) for comp, perc in regex_comp: if type(perc) != str or comp not in comp_locations: continue var_locs = comp_locations[comp] src = defaultdict(list) possible_num_locs = set() for x, y in var_locs: for i in range(x, len(comps)): possible_num_locs.add((i, y)) src[(i, y)].append((x, y)) for j in range(y, len(comps[0])): possible_num_locs.add((x, j)) src[(x, j)].append((x, y)) for x, y in possible_num_locs: if len(nums[x][y]) == 0: continue num = nums[x][y][0] if num < 0: continue for d in [1, 100]: if num / d > 1: continue sol = solve(sympify(f'Eq({perc}, {num/d})')) if len(sol) == 0: continue assert len(sol) == 1 if match_num_in_table(pii_t_idx, float(sol[0]), regex_comp, regex_vars, db_comps) != -1: for s in src[(x, y)]: edges.append((s, (x, y))) break return edges def l1_dist(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) def get_farthest(p, l): res = l[0] for p_ in l: if l1_dist(p, p_) > l1_dist(p, res): res = p_ return res def get_table_edges(pii_t_idx): pii, t_idx = pii_t_idx glass_ids = set(pii_glass_ids.loc[pii_glass_ids['PII'] == pii, 'GLASNO']) & avail_glass_ids res = [] if len(glass_ids) == 0: return res r, c = train_data_dict[pii_t_idx]['num_rows'], train_data_dict[pii_t_idx]['num_cols'] for k in composition.keys(): db_comps = viewcomp(composition[k].loc[glass_ids & gids[k]]) / 100 for regex_comp, regex_vars in var_regex_piis[pii]: if len(regex_vars) == 1: res += get_table_edges_for_regex_comp(pii_t_idx, regex_comp, regex_vars, db_comps) edges = sorted(set(res)) edges_src, edges_dst = defaultdict(set), defaultdict(set) for src, dst in edges: edges_src[src].add(dst) for src in edges_src.keys(): if src in edges_src[src]: edges_src[src] = set([src]) for dst in edges_src[src]: edges_dst[dst].add(src) for dst in edges_dst.keys(): if dst in edges_dst[dst]: edges_dst[dst] = set([dst]) edges_dst[dst] = list(edges_dst[dst]) edges = [] for dst in edges_dst.keys(): if len(edges_dst[dst]) == 1: edges.append((dst, edges_dst[dst][0])) continue edges.append((dst, get_farthest(dst, edges_dst[dst]))) return sorted(edges) regex_edges = dict() for c in tqdm(train_data): if c['pii'] not in regex_piis: continue k = (c['pii'], c['t_idx']) edges = get_table_edges(k) if len(edges) > 0: regex_edges[k] = edges orient = dict() for pii_t_idx in regex_edges.keys(): if len(regex_edges[pii_t_idx]) == 1: e = regex_edges[pii_t_idx][0] if e[0] == e[1]: # self edge pass elif e[0][1] == e[1][1]: # same column orient[pii_t_idx] = 'row' elif e[0][0] == e[1][0]: # same row orient[pii_t_idx] = 'col' else: srcs = [e[0] for e in regex_edges[pii_t_idx]] rows, cols = set([x[0] for x in srcs]), set([x[1] for x in srcs]) assert len(rows) > 1 or len(cols) > 1 if len(cols) == 1: orient[pii_t_idx] = 'row' elif len(rows) == 1: orient[pii_t_idx] = 'col' else: if all(e[0] != e[1] for e in regex_edges[pii_t_idx]): same_cols = sum(e[0][1] == e[1][1] for e in regex_edges[pii_t_idx]) same_rows = sum(e[0][0] == e[1][0] for e in regex_edges[pii_t_idx]) orient[pii_t_idx] = 'row' if same_cols >= same_rows else 'col' else: row_cnt, col_cnt = Counter(), Counter() for e in regex_edges[pii_t_idx]: row_cnt[e[0][0]] += 1 col_cnt[e[0][1]] += 1 orient[pii_t_idx] = 'row' if col_cnt.most_common(1)[0][1] >= row_cnt.most_common(1)[0][1] else 'col' regex_edges = {pii_t_idx: regex_edges[pii_t_idx] for pii_t_idx in orient.keys()} for pii_t_idx in regex_edges.keys(): if orient[pii_t_idx] == 'row': regex_edges[pii_t_idx] = [e for e in regex_edges[pii_t_idx] if e[0][1] == e[1][1]] else: regex_edges[pii_t_idx] = [e for e in regex_edges[pii_t_idx] if e[0][0] == e[1][0]] row_labels, col_labels = dict(), dict() for pii_t_idx in regex_edges.keys(): srcs = [e[0] for e in regex_edges[pii_t_idx]] rows, cols = set([x[0] for x in srcs]), set([x[1] for x in srcs]) r, c = train_data_dict[pii_t_idx]['num_rows'], train_data_dict[pii_t_idx]['num_cols'] row_labels[pii_t_idx], col_labels[pii_t_idx] = [0] * r, [0] * c if len(rows) == 0 and len(cols) == 0: continue if len(rows) == 1 and len(cols) == 1: src = regex_edges[pii_t_idx][0][0] if orient[pii_t_idx] == 'row': row_labels[pii_t_idx][src[0]] = 1 col_labels[pii_t_idx][src[1]] = 2 else: row_labels[pii_t_idx][src[0]] = 2 col_labels[pii_t_idx][src[1]] = 1 elif len(cols) == 1: for src, _ in regex_edges[pii_t_idx]: row_labels[pii_t_idx][src[0]] = 1 col_labels[pii_t_idx][src[1]] = 2 elif len(rows) == 1: for src, _ in regex_edges[pii_t_idx]: row_labels[pii_t_idx][src[0]] = 2 col_labels[pii_t_idx][src[1]] = 1 else: dst_cnt = Counter() for src, dst in regex_edges[pii_t_idx]: if src != dst: dst_cnt[dst] += 1 regex_edges[pii_t_idx] = [e for e in regex_edges[pii_t_idx] if e[0] == e[1] or dst_cnt[e[1]] > 1] if len(regex_edges[pii_t_idx]) == 1: regex_edges[pii_t_idx] = [] if orient[pii_t_idx] == 'row': for src, _ in regex_edges[pii_t_idx]: row_labels[pii_t_idx][src[0]] = 1 col_labels[pii_t_idx][src[1]] = 2 else: for src, _ in regex_edges[pii_t_idx]: row_labels[pii_t_idx][src[0]] = 2 col_labels[pii_t_idx][src[1]] = 1 for pii_t_idx in regex_edges.keys(): if len(regex_edges[pii_t_idx]) > 0: assert sum(row_labels[pii_t_idx] + col_labels[pii_t_idx]) > 0 train_data = pickle.load(open(os.path.join(table_dir, 'train_data_mcc_ci.pkl'), 'rb')) train_data_dict = {(c['pii'], c['t_idx']): c for c in train_data} for pii_t_idx in regex_edges.keys(): if len(regex_edges[pii_t_idx]) == 0: continue c = train_data_dict[pii_t_idx] c['comp_table'] = True c['sum_less_100'] = 1 c['row_label'], c['col_label'] = row_labels[pii_t_idx], col_labels[pii_t_idx] c['edge_list'] = [] for src, dst in regex_edges[pii_t_idx]: c['edge_list'].append((src[0] * c['num_cols'] + src[1], dst[0] * c['num_cols'] + dst[1])) pickle.dump(train_data, open(os.path.join(table_dir, 'train_data_mcc_pi.pkl'), 'wb'))