""" --------------------------------------------------------------------------------------------------------- SciGlass Database is obtained from : https://github.com/epam/SciGlass We thank the repository owner for publically releasing the dataset. The license for the same is provided below. --------------------------------------------------------------------------------------------------------- ODC Open Database License (ODbL) Copyright (c) 2019 EPAM Systems Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --------------------------------------------------------------------------------------------------------- """ from collections import defaultdict import os import pickle import re from tqdm import tqdm table_dir = '../../data' train_data = pickle.load(open(os.path.join(table_dir, 'train_data_scc.pkl'), 'rb')) pii_glass_ids = pickle.load(open(os.path.join(table_dir, 'sciglass_pii_gids.pkl'), 'rb')) train_data = sorted(train_data, key=lambda x: (x['pii'], x['t_idx'])) pii_tables = defaultdict(list) for c in train_data: pii_tables[c['pii']].append(c) def non_zero_cols(df): return df.T[df.astype(bool).sum(axis=0) > 0].index.to_list() composition = { 'mol': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_mol.pkl'), 'rb')), 'wt': pickle.load(open(os.path.join(table_dir, 'sciglass_composition_wt.pkl'), 'rb')), } gids = dict() avail_glass_ids = set() for k in composition.keys(): composition[k] = composition[k][(composition[k].sum(axis=1).round() == 100)] gids[k] = set(composition[k].index) & set(pii_glass_ids['GLASNO']) composition[k] = composition[k].loc[gids[k]].sort_index() composition[k] = composition[k][non_zero_cols(composition[k])] avail_glass_ids |= gids[k] print(len(avail_glass_ids)) def viewcomp(df): return df.T[df.astype(bool).sum(axis=0) > 0].T split_pii_t_idxs = pickle.load(open(os.path.join(table_dir, 'train_val_test_split.pkl'), 'rb')) piis = list(set(pii for pii, _ in split_pii_t_idxs['train'])) print(len(piis)) num_pattern = re.compile(r'\d*\.\d+|\d+') comp_lower_dict = {c.lower(): c for c in composition['wt'].columns} def comp_post_process(comp): return comp_lower_dict[comp.lower()] def num_post_process(num): return float(num) def get_comp_and_nums(table, cons_pattern): comps, nums = [], [] for r in table: r_comps, r_nums = [], [] for cell in r: cell_comps = re.findall(cons_pattern, cell) r_comps.append(list(set(map(comp_post_process, cell_comps)))) cell_nums = re.findall(num_pattern, re.sub(cons_pattern, ' ', cell)) r_nums.append(list(set(map(num_post_process, cell_nums)))) comps.append(r_comps) nums.append(r_nums) return comps, nums def l1_dist(a, b): return abs(a[0] - b[0]) + abs(a[1] - b[1]) def closest(l, p): res = l[0] for x in l: if l1_dist(x, p) < l1_dist(res, p): res = x return res def within_tol(num, l, tol): if not l: return False lo, hi = (1 - tol) * num, (1 + tol) * num return any(lo <= n <= hi for n in l) def check_row_and_col(n, nums, row_num, col_num, tol): res = [] tmp = [row_num, col_num] if within_tol(n, nums[row_num][col_num], tol): res.append(tmp + [row_num, col_num]) for j in range(len(nums[row_num])): if j == col_num: continue if within_tol(n, nums[row_num][j], tol): res.append(tmp + [row_num, j]) for i in range(len(nums)): if i == row_num: continue if within_tol(n, nums[i][col_num], tol): res.append(tmp + [i, col_num]) return res def get_max_comp_row_col(t): ans = 0 row_len, col_len = [], [] for i in range(len(t)): s = set() for j in t[i]: s |= set(j.keys()) row_len.append(len(s)) for j in range(len(t[0])): s = set() for i in range(len(t)): s |= set(t[i][j].keys()) col_len.append(len(s)) max_len = max(row_len + col_len) idxs = { 'row': [i for i, x in enumerate(row_len) if x == max_len], 'col': [i for i, x in enumerate(col_len) if x == max_len], } return max_len, idxs def get_comp_location_in_table(t, orient, idx): assert orient in ['row', 'col'] if orient == 'row': return {j: closest(list(t[idx][j].values()), (idx, j)) for j in range(len(t[idx])) if len(t[idx][j]) > 0} else: return {i: closest(list(t[i][idx].values()), (i, idx)) for i in range(len(t)) if len(t[i][idx]) > 0} def search_db_row_in_table(db_row, comps, nums): comp_locations = defaultdict(list) for i, r in enumerate(comps): for j, c in enumerate(r): for comp in c: comp_locations[comp].append((i, j)) res = {'row': {}, 'col': {}} for tol in [1e-4, 1e-2, 2e-2, 3e-2]: num_comp_total = 0 num_loc = [] for i in range(len(comps)): num_loc.append([dict() for j in range(len(comps[0]))]) for c, n in db_row.iteritems(): if n == 0: continue num_comp_total += 1 comp_res = [] for cx, cy in comp_locations[c]: comp_res += check_row_and_col(n, nums, cx, cy, tol) for cx, cy, i, j in comp_res: if c in num_loc[i][j]: if l1_dist((i, j), (cx, cy)) < l1_dist((i, j), num_loc[i][j][c]): num_loc[i][j][c] = (cx, cy) else: num_loc[i][j][c] = (cx, cy) max_len, idxs = get_max_comp_row_col(num_loc) if max_len >= max(num_comp_total - 1, 2): for k in idxs.keys(): # ['row', 'col'] for idx in idxs[k]: res[k][idx] = get_comp_location_in_table(num_loc, k, idx) return res return res def search_glass_id_in_table(db_row, comps, nums, table): d1, d2 = search_db_row_in_table(db_row, comps, nums), search_db_row_in_table(db_row * 0.01, comps, nums) res = dict() for k in d1.keys(): # ['row', 'col'] if len(d1[k]) == 1 and len(d2[k]) == 1: k1, k2 = list(d1[k].keys())[0], list(d2[k].keys())[0] assert type(d1[k][k1]) == dict and type(d2[k][k2]) == dict if len(d1[k][k1]) >= len(d2[k][k2]): res[k] = d1[k] else: res[k] = d2[k] elif len(d1[k]) >= len(d2[k]): res[k] = d1[k] else: res[k] = d2[k] return res def search_glass_id_in_paper(db_row, paper_tables, comp_pattern): res = [] for table in paper_tables: if table['regex_table'] == 1: res.append({'row': {}, 'col': {}}) continue comps, nums = get_comp_and_nums(table['act_table'], comp_pattern) res.append(search_glass_id_in_table(db_row, comps, nums, table['act_table'])) return res def get_cons_pattern(gids, compositions): constituents = non_zero_cols(compositions.loc[gids]) assert all(['-' not in c for c in constituents]) constituents = set(constituents) - set(['RO', 'R2O', 'R2O3']) constituents = sorted(constituents, key=lambda x: -len(x)) constituents = [c.replace('(', '\(').replace(')', '\)') for c in constituents] return constituents, re.compile('|'.join(constituents), re.IGNORECASE) def uniq_list(l): res = [] l = sorted(l, key=lambda x: -len(x)) for x in l: flag = True for r in res: if x.items() <= r.items(): flag = False break if flag: res.append(x) return res def get_cols(d): cols = set() for i in d.keys(): assert type(d[i]) == list for x in d[i]: assert type(x) == dict cols |= set(x.keys()) return cols def search_glass_ids_in_paper(pii): xml_tables = pii_tables[pii] for t in xml_tables: for k in composition.keys(): # mol, wt t[k] = {'row': defaultdict(list), 'col': defaultdict(list)} glass_ids = set(pii_glass_ids.loc[pii_glass_ids['PII'] == pii, 'GLASNO']) & avail_glass_ids if len(glass_ids) == 0: return wt_mol_info = defaultdict(dict) for k in composition.keys(): wt_mol_info[k]['gids'] = glass_ids & gids[k] wt_mol_info[k]['compounds'], wt_mol_info[k]['cons_pattern'] = get_cons_pattern(wt_mol_info[k]['gids'], composition[k]) wt_mol_info[k]['db'] = viewcomp(composition[k].loc[wt_mol_info[k]['gids']]) for gid in glass_ids: for k in composition.keys(): # ['mol', 'wt'] if gid in wt_mol_info[k]['gids']: res = search_glass_id_in_paper(wt_mol_info[k]['db'].loc[gid], xml_tables, wt_mol_info[k]['cons_pattern']) for t, r in zip(xml_tables, res): for k_ in r.keys(): # ['row', 'col'] for x in r[k_]: assert type(x) == int t[k][k_][x].append(r[k_][x]) for t in xml_tables: for k in composition.keys(): if len(t[k]['row']) == 0 and len(t[k]['col']) == 0: t[k]['row'] = None t[k]['col'] = None elif len(t[k]['row']) >= len(t[k]['col']): t[k]['col'] = None for x in t[k]['row']: t[k]['row'][x] = uniq_list(t[k]['row'][x]) else: t[k]['row'] = None for x in t[k]['col']: t[k]['col'][x] = uniq_list(t[k]['col'][x]) if t['mol']['row'] and t['wt']['col']: if len(t['mol']['row']) >= len(t['wt']['col']): t['wt']['col'] = None else: t['mol']['row'] = None elif t['mol']['col'] and t['wt']['row']: if len(t['mol']['col']) >= len(t['wt']['row']): t['wt']['row'] = None else: t['mol']['col'] = None elif t['mol']['row'] and t['wt']['row']: if len(set(t['mol']['row'].keys()) & set(t['wt']['row'].keys())) > 0 and \ len(get_cols(t['mol']['row']) & get_cols(t['wt']['row'])) > 0: if len(t['mol']['row']) >= len(t['wt']['row']): t['wt']['row'] = None else: t['mol']['row'] = None elif t['mol']['col'] and t['wt']['col']: if len(set(t['mol']['col'].keys()) & set(t['wt']['col'].keys())) > 0 and \ len(get_cols(t['mol']['col']) & get_cols(t['wt']['col'])) > 0: if len(t['mol']['col']) >= len(t['wt']['col']): t['wt']['col'] = None else: t['mol']['col'] = None for pii in tqdm(piis): search_glass_ids_in_paper(pii) def populate_comp_labels(t: dict): # 0 -> no label # 1 -> composition present # 2 -> constituent prsesent t['row_label'], t['col_label'] = [0] * t['num_rows'], [0] * t['num_cols'] for k in ['mol', 'wt']: if t[k]['row']: for x in t[k]['row'].keys(): t['row_label'][x] = 1 for x in get_cols(t[k]['row']): t['col_label'][x] = 2 elif t[k]['col']: for x in t[k]['col'].keys(): t['col_label'][x] = 1 for x in get_cols(t[k]['col']): t['row_label'][x] = 2 t['comp_table'] = sum(t['row_label'] + t['col_label']) > 0 def populate_edges(t: dict): t['edge_list'] = [] def get_node_num(n): return n[0] * t['num_cols'] + n[1] for k in ['mol', 'wt']: for orient in ['row', 'col']: if t[k][orient] is None: continue for idx in t[k][orient]: for x in t[k][orient][idx]: for a in x: src = (idx, a) if orient == 'row' else (a, idx) dst = x[a] t['edge_list'].append((get_node_num(src), get_node_num(dst))) t['edge_list'] = list(set(t['edge_list'])) def populate_mol_wt_labels(t: dict): # 0 -> no label # 1 -> mol # 2 -> wt t['mol_wt'] = [[0] * t['num_cols'] for _ in range(t['num_rows'])] for label, k in zip([1, 2], ['mol', 'wt']): for orient in ['row', 'col']: if t[k][orient] is None: continue for idx in t[k][orient]: for x in t[k][orient][idx]: for a in x: src = (idx, a) if orient == 'row' else (a, idx) t['mol_wt'][src[0]][src[1]] = label for pii in piis: for t in pii_tables[pii]: populate_comp_labels(t) populate_edges(t) # populate_mol_wt_labels(t) t.pop('mol') t.pop('wt') pickle.dump(train_data, open(os.path.join(table_dir, 'train_data_mcc_ci.pkl'), 'wb'))