--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: xlm-roberta-base-finetuned results: [] --- # xlm-roberta-base-finetuned This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the 'Contradictory, My Dear Watson' kaggle competition dataset. It achieves the following results on the evaluation set: - Loss: 0.7526 - Accuracy: 0.7075 - F1: 0.7080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 76 | 1.0440 | 0.5004 | 0.5007 | | 1.03 | 2.0 | 152 | 0.8601 | 0.6370 | 0.6374 | | 1.03 | 3.0 | 228 | 0.7761 | 0.6712 | 0.6727 | | 0.7667 | 4.0 | 304 | 0.7526 | 0.6951 | 0.6967 | | 0.7667 | 5.0 | 380 | 0.7526 | 0.7075 | 0.7080 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0