--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-ve-U10-12 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.7843137254901961 --- # vit-base-patch16-224-ve-U10-12 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6623 - Accuracy: 0.7843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.3659 | 0.97 | 15 | 1.2287 | 0.4706 | | 1.1063 | 2.0 | 31 | 1.0234 | 0.6863 | | 0.9468 | 2.97 | 46 | 0.8665 | 0.6863 | | 0.6825 | 4.0 | 62 | 0.7482 | 0.7059 | | 0.5534 | 4.97 | 77 | 0.7609 | 0.7059 | | 0.4019 | 6.0 | 93 | 0.7092 | 0.7255 | | 0.3323 | 6.97 | 108 | 0.6623 | 0.7843 | | 0.2743 | 8.0 | 124 | 0.7407 | 0.7059 | | 0.2411 | 8.97 | 139 | 0.6249 | 0.7647 | | 0.2021 | 10.0 | 155 | 0.7222 | 0.7451 | | 0.1925 | 10.97 | 170 | 0.7808 | 0.7059 | | 0.1748 | 11.61 | 180 | 0.7451 | 0.7255 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0