--- license: apache-2.0 base_model: google/vit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-base-patch16-224-RU5-10 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.5833333333333334 --- # vit-base-patch16-224-RU5-10 This model is a fine-tuned version of [google/vit-base-patch16-224](https://huggingface.co/google/vit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.2348 - Accuracy: 0.5833 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5.5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 2 | 1.3715 | 0.4833 | | No log | 2.0 | 4 | 1.3415 | 0.4667 | | No log | 3.0 | 6 | 1.3148 | 0.4667 | | No log | 4.0 | 8 | 1.2919 | 0.4833 | | 1.3369 | 5.0 | 10 | 1.2726 | 0.4833 | | 1.3369 | 6.0 | 12 | 1.2569 | 0.5 | | 1.3369 | 7.0 | 14 | 1.2442 | 0.55 | | 1.3369 | 8.0 | 16 | 1.2348 | 0.5833 | | 1.3369 | 9.0 | 18 | 1.2287 | 0.5833 | | 1.2441 | 10.0 | 20 | 1.2261 | 0.5667 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0