--- tags: - autotrain - meta-llama - meta-llama/Llama-2-7b-hf inference: false widget: - text: > instruction: "If you are a doctor, please answer the medical questions based on the patient's description." input: "Hi, I had a subarachnoid bleed and coiling of brain aneurysm last year. I am having some major bilateral temple pain along with numbness that comes and goes in my left arm/hand/fingers. I have had headaches since the aneurysm, but this is different. Also, my moods have been horrible for the past few weeks." response: '' library_name: peft pipeline_tag: text-generation --- llama-2-7b-hf model finetuned for medical consultation. Works on T4 GPU (16GB VRAM), as well as CPU (32GB RAM) **To run on GPU :** ```python import transformers from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch from torch import cuda, bfloat16 base_model_id = 'meta-llama/Llama-2-7b-chat-hf' device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' bnb_config = transformers.BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type='nf4', bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=bfloat16 ) hf_auth = "your-huggingface-access-token" model_config = transformers.AutoConfig.from_pretrained( base_model_id, use_auth_token=hf_auth ) model = transformers.AutoModelForCausalLM.from_pretrained( base_model_id, trust_remote_code=True, config=model_config, quantization_config=bnb_config, device_map='auto', use_auth_token=hf_auth ) config = PeftConfig.from_pretrained("Ashishkr/llama-2-medical-consultation") model = PeftModel.from_pretrained(model, "Ashishkr/llama-2-medical-consultation").to(device) model.eval() print(f"Model loaded on {device}") tokenizer = transformers.AutoTokenizer.from_pretrained( base_model_id, use_auth_token=hf_auth ) ``` ```python def llama_generate( model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, max_new_tokens: int = 128, temperature: float = 0.92): inputs = tokenizer( [prompt], return_tensors="pt", return_token_type_ids=False, ).to( device ) # Check if bfloat16 is supported, otherwise use float16 dtype_to_use = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16 with torch.autocast("cuda", dtype=dtype_to_use): response = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, return_dict_in_generate=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) decoded_output = tokenizer.decode( response["sequences"][0], skip_special_tokens=True, ) return decoded_output[len(prompt) :] prompt = """ instruction: "If you are a doctor, please answer the medical questions based on the patient's description." \n input: "Hi, I had a subarachnoid bleed and coiling of brain aneurysm last year. I am having some major bilateral temple pain along with numbness that comes and goes in my left arm/hand/fingers. I have had headaches since the aneurysm, but this is different. Also, my moods have been horrible for the past few weeks.\n response: """ # You can use the function as before response = llama_generate( model, tokenizer, prompt, max_new_tokens=100, temperature=0.92, ) print(response) ``` **To run on CPU** ```python import torch import transformers from torch import cuda, bfloat16 from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer base_model_id = 'meta-llama/Llama-2-7b-chat-hf' device = f'cuda:{cuda.current_device()}' if cuda.is_available() else 'cpu' bnb_config = transformers.BitsAndBytesConfig( llm_int8_enable_fp32_cpu_offload = True ) import torch hf_auth = "YOUR-HUGGINGFACE-ACCESS-TOKEN" model_config = transformers.AutoConfig.from_pretrained( base_model_id, use_auth_token=hf_auth ) model = transformers.AutoModelForCausalLM.from_pretrained( base_model_id, trust_remote_code=True, config=model_config, quantization_config=bnb_config, # device_map='auto', use_auth_token=hf_auth ) config = PeftConfig.from_pretrained("Ashishkr/llama-2-medical-consultation") model = PeftModel.from_pretrained(model, "Ashishkr/llama-2-medical-consultation").to(device) model.eval() print(f"Model loaded on {device}") tokenizer = transformers.AutoTokenizer.from_pretrained( base_model_id, use_auth_token=hf_auth ) def llama_generate( model: AutoModelForCausalLM, tokenizer: AutoTokenizer, prompt: str, max_new_tokens: int = 128, temperature: float = 0.92): inputs = tokenizer( [prompt], return_tensors="pt", return_token_type_ids=False, ).to( device ) # Check if bfloat16 is supported, otherwise use float16 dtype_to_use = torch.float32 with torch.autocast("cuda", dtype=dtype_to_use): response = model.generate( **inputs, max_new_tokens=max_new_tokens, temperature=temperature, return_dict_in_generate=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, ) decoded_output = tokenizer.decode( response["sequences"][0], skip_special_tokens=True, ) return decoded_output[len(prompt) :] prompt = """ instruction: "If you are a doctor, please answer the medical questions based on the patient's description." \n input: "Hi, I had a subarachnoid bleed and coiling of brain aneurysm last year. I am having some major bilateral temple pain along with numbness that comes and goes in my left arm/hand/fingers. I have had headaches since the aneurysm, but this is different. Also, my moods have been horrible for the past few weeks.\n response: """ # You can use the function as before response = llama_generate( model, tokenizer, prompt, max_new_tokens=100, temperature=0.92, ) print(response) ```