--- base_model: unsloth/Phi-3-mini-4k-instruct-bnb-4bit language: - en license: creativeml-openrail-m tags: - text-generation-inference - transformers - unsloth - trl - sft --- # Note - **This is an Experiment to generate Clinical Trial Synopsis. Will be making a better one Soon! Stay Updated** - **LORA:** [ArvindSharma18/Phi-3-mini-4k-instruct-bnb-4bit-Clinical-Trail-Exp](https://huggingface.co/ArvindSharma18/Phi-3-mini-4k-instruct-bnb-4bit-Clinical-Trail-Exp) # How to Use **Note:** May Hallucinate on Trial attributes (I am planning to use this model as a foundational model for more downstream tasks I have in my pipeline) or Repeat (especially in case of Eligibility Criteria generation) in case of some trials. Working on making it more reliable. ```python from unsloth import FastLanguageModel import torch max_seq_length = 4096 dtype = torch.float16 load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = "ArvindSharma18/Phi-3-mini-4k-instruct-bnb-4bit-Clinical-Trail-Merged-Exp", # "unsloth/mistral-7b" for 16bit loading max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit ) FastLanguageModel.for_inference(model) inputs = tokenizer( [ "Write Clinical Trial Summary for Effects of High-protein Milk Supplementation on Muscular Strength and Power, Body Composition, and Skeletal Muscle Regulatory Markers Following Heavy Resistance Training in Resistance-trained Men" ], return_tensors = "pt").to("cuda") from transformers import TextStreamer text_streamer = TextStreamer(tokenizer, skip_prompt = True) _ = model.generate(input_ids = inputs.input_ids, attention_mask = inputs.attention_mask, streamer = text_streamer, max_new_tokens = 4096, do_sample=True) ``` # Uploaded model - **Developed by:** ArvindSharma18 - **Finetuned from model :** unsloth/Phi-3-mini-4k-instruct-bnb-4bit [](https://github.com/unslothai/unsloth)