--- license: other tags: - generated_from_trainer datasets: - scene_parse_150 model-index: - name: segformer-b0-scene-parse-150 results: [] --- # segformer-b0-scene-parse-150 This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset. It achieves the following results on the evaluation set: - Loss: 4.4530 - Mean Iou: 0.0308 - Mean Accuracy: 0.0934 - Overall Accuracy: 0.3126 - Per Category Iou: [0.368405958754407, 0.11499370080653983, 0.5753658515502771, 0.2138805564642673, 0.28958703459911295, 0.191305743989082, 0.003497854077253219, 0.1288281531360376, 0.12360856380177596, 0.0, 0.0, 0.0, 0.003947940713975041, 0.0, 0.0, 0.015025862437481299, nan, 0.0, 0.0, 0.0037038152308109247, 4.4974139869574995e-05, nan, 0.12424162490108151, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.24922118380062305, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan] - Per Category Accuracy: [0.7566432234358786, 0.24871206280227098, 0.7073059287949548, 0.34911440750830386, 0.992694013910948, 0.2160975230593844, 0.0035416689300031504, 0.5627543803943077, 0.22603353810393492, 0.0, 0.0, nan, 0.17717717717717718, nan, 0.0, 0.017564022485946285, nan, 0.0, 0.0, 0.004741894444658622, 0.004261363636363636, nan, 0.19470855725506409, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.3939161833898676, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan] ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Per Category Iou | Per Category Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:| | 4.6085 | 1.0 | 20 | 4.4530 | 0.0308 | 0.0934 | 0.3126 | [0.368405958754407, 0.11499370080653983, 0.5753658515502771, 0.2138805564642673, 0.28958703459911295, 0.191305743989082, 0.003497854077253219, 0.1288281531360376, 0.12360856380177596, 0.0, 0.0, 0.0, 0.003947940713975041, 0.0, 0.0, 0.015025862437481299, nan, 0.0, 0.0, 0.0037038152308109247, 4.4974139869574995e-05, nan, 0.12424162490108151, nan, 0.0, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, 0.0, 0.0, 0.24922118380062305, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, nan, nan, 0.0, 0.0, 0.0, nan, 0.0, 0.0, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, 0.0, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, 0.0, nan] | [0.7566432234358786, 0.24871206280227098, 0.7073059287949548, 0.34911440750830386, 0.992694013910948, 0.2160975230593844, 0.0035416689300031504, 0.5627543803943077, 0.22603353810393492, 0.0, 0.0, nan, 0.17717717717717718, nan, 0.0, 0.017564022485946285, nan, 0.0, 0.0, 0.004741894444658622, 0.004261363636363636, nan, 0.19470855725506409, nan, 0.0, nan, 0.0, nan, 0.0, nan, nan, 0.0, 0.0, 0.0, nan, nan, 0.0, nan, nan, 0.0, nan, 0.0, nan, 0.0, 0.3939161833898676, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, 0.0, nan, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, 0.0, nan, nan, 0.0, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, 0.0, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, nan, nan, nan, nan, nan, nan, nan, 0.0, nan, nan, 0.0, nan, nan, 0.0, 0.0, nan, 0.0, nan, nan, nan, nan, nan] | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3