--- base_model: microsoft/layoutlm-base-uncased tags: - generated_from_trainer model-index: - name: layoutlm-funsd results: [] --- # layoutlm-funsd This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.7407 - Education: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} - Email: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} - Github: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} - Location: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} - Name: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} - Name : {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2} - Phone Number: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} - Soft Skills: {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} - Technical Skills: {'precision': 0.2, 'recall': 0.35714285714285715, 'f1': 0.25641025641025644, 'number': 14} - Overall Precision: 0.1176 - Overall Recall: 0.2 - Overall F1: 0.1481 - Overall Accuracy: 0.1475 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Education | Email | Github | Linkedin | Location | Name | Name | Phone Number | Soft Skills | Technical Skills | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:---------------------------------------------------------:|:---------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:| | 2.9387 | 1.0 | 2 | 2.8701 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.14285714285714285, 'recall': 0.5, 'f1': 0.22222222222222224, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 14} | 0.0185 | 0.0333 | 0.0238 | 0.0328 | | 2.6716 | 2.0 | 4 | 2.7798 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2}| {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.10526315789473684, 'recall': 0.14285714285714285, 'f1': 0.12121212121212122, 'number': 14}| 0.0612 | 0.1 | 0.0759 | 0.1311 | | 2.5524 | 3.0 | 6 | 2.7407 | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 5} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 3} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.2, 'recall': 0.5, 'f1': 0.28571428571428575, 'number': 2}| {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 2} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 0} | {'precision': 0.2, 'recall': 0.35714285714285715, 'f1': 0.25641025641025644, 'number': 14}| 0.1176 | 0.2 | 0.1481 | 0.1475 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1