--- language: - ar license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0 metrics: - wer model-index: - name: Whisper Tunisien results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Tunisian_dataset_STT-TTS15s_filtred1.0 type: Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0 args: 'config: ar, split: test' metrics: - name: Wer type: wer value: 104.92910195813639 --- # Whisper Tunisien This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Tunisian_dataset_STT-TTS15s_filtred1.0 dataset. It achieves the following results on the evaluation set: - Loss: 2.9037 - Wer: 104.9291 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 15000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:--------:|:-----:|:---------------:|:--------:| | 1.2369 | 7.7519 | 1000 | 3.2094 | 117.6907 | | 1.0283 | 15.5039 | 2000 | 3.0674 | 110.6685 | | 0.9629 | 23.2558 | 3000 | 3.0180 | 130.3174 | | 0.893 | 31.0078 | 4000 | 2.9887 | 126.7387 | | 0.835 | 38.7597 | 5000 | 2.9676 | 103.5111 | | 0.7907 | 46.5116 | 6000 | 2.9500 | 107.2248 | | 0.7624 | 54.2636 | 7000 | 2.9370 | 107.5625 | | 0.7624 | 62.0155 | 8000 | 2.9270 | 104.4564 | | 0.7198 | 69.7674 | 9000 | 2.9200 | 104.3889 | | 0.6818 | 77.5194 | 10000 | 2.9143 | 111.6138 | | 0.7245 | 85.2713 | 11000 | 2.9099 | 104.5240 | | 0.6762 | 93.0233 | 12000 | 2.9071 | 104.5915 | | 0.6691 | 100.7752 | 13000 | 2.9052 | 104.8616 | | 0.6366 | 108.5271 | 14000 | 2.9040 | 104.2539 | | 0.6801 | 116.2791 | 15000 | 2.9037 | 104.9291 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1