--- license: mit base_model: indolem/indobert-base-uncased tags: - generated_from_trainer datasets: - indonlu_nergrit metrics: - precision - recall - f1 - accuracy model-index: - name: belajarner results: - task: name: Token Classification type: token-classification dataset: name: indonlu_nergrit type: indonlu_nergrit config: indonlu_nergrit_source split: validation args: indonlu_nergrit_source metrics: - name: Precision type: precision value: 0.7905982905982906 - name: Recall type: recall value: 0.8383685800604229 - name: F1 type: f1 value: 0.8137829912023461 - name: Accuracy type: accuracy value: 0.9516761543327008 --- # belajarner This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the indonlu_nergrit dataset. It achieves the following results on the evaluation set: - Loss: 0.2235 - Precision: 0.7906 - Recall: 0.8384 - F1: 0.8138 - Accuracy: 0.9517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 209 | 0.1750 | 0.7418 | 0.8157 | 0.7770 | 0.9469 | | No log | 2.0 | 418 | 0.1590 | 0.7677 | 0.8338 | 0.7994 | 0.9491 | | 0.2398 | 3.0 | 627 | 0.1720 | 0.7817 | 0.8112 | 0.7961 | 0.9476 | | 0.2398 | 4.0 | 836 | 0.1812 | 0.7948 | 0.8248 | 0.8095 | 0.9510 | | 0.0753 | 5.0 | 1045 | 0.1934 | 0.7872 | 0.8384 | 0.8120 | 0.9545 | | 0.0753 | 6.0 | 1254 | 0.2178 | 0.7805 | 0.8323 | 0.8056 | 0.9497 | | 0.0753 | 7.0 | 1463 | 0.2199 | 0.7943 | 0.8459 | 0.8193 | 0.9522 | | 0.0374 | 8.0 | 1672 | 0.2235 | 0.7906 | 0.8384 | 0.8138 | 0.9517 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2