--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: clip-vit-large-patch14-finetuned-fruits-360_vitlarge results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: fruits-360-original-size split: validation args: fruits-360-original-size metrics: - name: Accuracy type: accuracy value: 0.9605009633911368 --- # clip-vit-large-patch14-finetuned-fruits-360_vitlarge This model is a fine-tuned version of [openai/clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1732 - Accuracy: 0.9605 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.8631 | 0.98 | 48 | 0.4620 | 0.8529 | | 0.485 | 1.99 | 97 | 0.2783 | 0.9101 | | 0.3246 | 2.95 | 144 | 0.1732 | 0.9605 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2