--- datasets: - roneneldan/TinyStories --- --- Model trained on the TinyStories Dataset, replicating https://arxiv.org/abs/2305.07759, based on LLaMA architecture. --- Hyperparams used to train this model: ``` "batch_size": 64, "block_size": 128, "lr": 6e-4, "num_hidden_layers": 8, "num_attention_heads": 8, "hidden_size": 128, "dropout": 0.1, "weight_decay": 0.01, "epochs": 5, "eval_interval": 200, "eval_steps": 50, "vocab_size": 50257, "warmup_tokens": 10000, "gradient_accumulation_steps": 16, ``` --- EXAMPLE USAGE ```py !pip install --quiet transformers from transformers import AutoModelForCausalLM, AutoTokenizer from huggingface_hub import notebook_login, login import os #login to hf to check for llama access hf_token = os.getenv('HF_TOKEN') login(token=hf_token) model = AutoModelForCausalLM.from_pretrained('AnirudhRajagopalan1201/tinyllama-15M') tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf") prompt = "Lily likes cats and dogs. She asked her mom for a dog and her mom said no, so instead she asked" input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, temperature=0.1, max_length = 100, do_sample=True) output_text = tokenizer.decode(output[0], skip_special_tokens=True) print(output_text) ```