--- language: ru tags: - audio-classification - audio - emotion - emotion-recognition - emotion-classification - speech license: gpl-3.0 datasets: - Aniemore/resd model-index: - name: XLS-R Wav2Vec2 For Russian Speech Emotion Classification by Nikita Davidchuk results: - task: name: Audio Emotion Recognition type: audio-emotion-recognition dataset: name: Russian Emotional Speech Dialogs type: Aniemore/resd args: ru metrics: - name: accuracy type: accuracy value: 72% --- # Prepare and importing ```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import Wav2Vec2Config, AutoModelForAudioClassification, Wav2Vec2FeatureExtractor import librosa import numpy as np def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) inputs = {key: inputs[key].to(device) for key in inputs} with torch.no_grad(): logits = model_(**inputs).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` # Evoking: ```python TRUST = true config = Wav2Vec2Config.from_pretrained('Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition', trust_remote_code=TRUST) model_ = AutoModelForAudioClassification.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition", trust_remote_code=TRUST, config=config) feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("Aniemore/wav2vec2-xlsr-53-russian-emotion-recognition") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_.to(device) ``` # Use case ```python result = predict("/path/to/russian_audio_speech.wav", 16000) print(result) ``` ```python # outputs [{'Emotion': 'anger', 'Score': '0.0%'}, {'Emotion': 'disgust', 'Score': '100.0%'}, {'Emotion': 'enthusiasm', 'Score': '0.0%'}, {'Emotion': 'fear', 'Score': '0.0%'}, {'Emotion': 'happiness', 'Score': '0.0%'}, {'Emotion': 'neutral', 'Score': '0.0%'}, {'Emotion': 'sadness', 'Score': '0.0%'}] ``` # Results | | precision | recall | f1-score | support | |--------------|-----------|--------|----------|---------| | anger | 0.97 | 0.86 | 0.92 | 44 | | disgust | 0.71 | 0.78 | 0.74 | 37 | | enthusiasm | 0.51 | 0.80 | 0.62 | 40 | | fear | 0.80 | 0.62 | 0.70 | 45 | | happiness | 0.66 | 0.70 | 0.68 | 44 | | neutral | 0.81 | 0.66 | 0.72 | 38 | | sadness | 0.79 | 0.59 | 0.68 | 32 | | accuracy | | | 0.72 | 280 | | macro avg | 0.75 | 0.72 | 0.72 | 280 | | weighted avg | 0.75 | 0.72 | 0.73 | 280 |