#!/usr/bin/env python # Copyright 2019 Google LLC # # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. import argparse import bisect import codecs import math import os import re import sys import yaml sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) from primes import next_prime import xngen import xnncommon parser = argparse.ArgumentParser(description='XNNPACK generator') parser.add_argument("-s", "--spec", metavar="FILE", required=True, help="Spec (YAML) file") parser.add_argument("-o", "--output", metavar="FILE", required=True, help='Output (C++ source) file') parser.set_defaults(defines=list()) def split_ukernel_name(name): common_name, target_name = name.split("__", 1) common_parts = common_name.split("_") param_spec = common_parts[-1] m = re.search(r'(\d+)f(\d+)m(\d+)l(\d+)c(\d+)s(\d+)r', param_spec) assert m first_pass_tile = int(m[1]) middle_pass_tile = int(m[2]) last_pass_tile = int(m[3]) channel_tile = int(m[4]) channel_subtile = int(m[5]) channel_round = int(m[6]) arch, isa, assembly = xnncommon.parse_target_name(target_name) requantization = common_parts[-3] if requantization not in ["fp32", "rndnu"]: requantization = None return (first_pass_tile, middle_pass_tile, last_pass_tile, channel_tile, channel_subtile, channel_round, requantization, arch, isa, assembly) DWCONV_TEST_CODE = """\ TEST(${TEST_NAME}, c_eq_${CBLOCK}_first_pass_plus_one) { $if ISA_CHECK: ${ISA_CHECK}; DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+1}) .channels(${CBLOCK}) .Test(${", ".join(TEST_ARGS)}); } TEST(${TEST_NAME}, c_eq_${CBLOCK}_first_pass_and_last_pass) { $if ISA_CHECK: ${ISA_CHECK}; DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+LAST_PASS_TILE}) .channels(${CBLOCK}) .Test(${", ".join(TEST_ARGS)}); } TEST(${TEST_NAME}, c_eq_${CBLOCK}_multipass) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { $if ISA_CHECK: ${ISA_CHECK}; DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(${CBLOCK}) .Test(${", ".join(TEST_ARGS)}); } } $if CBLOCK > 1: TEST(${TEST_NAME}, c_div_${CBLOCK}_first_pass_plus_one) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+1}) .channels(channels) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_div_${CBLOCK}_first_pass_and_last_pass) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+LAST_PASS_TILE}) .channels(channels) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_div_${CBLOCK}_multipass) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(channels) .Test(${", ".join(TEST_ARGS)}); } } } $if ACTIVATION == "MINMAX": TEST(${TEST_NAME}, c_div_${CBLOCK}_with_qmin) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+LAST_PASS_TILE}) .channels(channels) .qmin(128) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_div_${CBLOCK}_with_qmax) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+LAST_PASS_TILE}) .channels(channels) .qmax(128) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_gt_${ADJCBLOCK}_first_pass_plus_one) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + 1}; channels < ${10 if CBLOCK == 1 else ADJCBLOCK + CBLOCK}; channels++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+1}) .channels(channels) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_gt_${ADJCBLOCK}_first_pass_and_last_pass) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + 1}; channels < ${10 if CBLOCK == 1 else ADJCBLOCK + CBLOCK}; channels++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+LAST_PASS_TILE}) .channels(channels) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_gt_${ADJCBLOCK}_multipass) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + 1}; channels < ${10 if CBLOCK == 1 else ADJCBLOCK + CBLOCK}; channels++) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(channels) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, c_eq_${CBLOCK}_first_pass_plus_one_multipixel) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+1}) .channels(channels) .width(3) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_eq_${CBLOCK}_first_pass_and_last_pass_multipixel) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(${FIRST_PASS_TILE+LAST_PASS_TILE}) .channels(channels) .width(3) .Test(${", ".join(TEST_ARGS)}); } } TEST(${TEST_NAME}, c_eq_${CBLOCK}_multipass_multipixel) { for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { $if ISA_CHECK: ${ISA_CHECK}; DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(channels) .width(3) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, multipixel_with_step) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { for (size_t step = 2; step <= ${KR}; step++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(channels) .width(3) .step(step) .Test(${", ".join(TEST_ARGS)}); } } } } TEST(${TEST_NAME}, multipixel_with_output_stride) { $if ISA_CHECK: ${ISA_CHECK}; for (size_t channels = 1; channels <= ${CBLOCK * 5}; channels += ${max(1, CBLOCK - 1)}) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(channels) .width(5) .output_stride(${next_prime(CR * 5 + 1)}) .Test(${", ".join(TEST_ARGS)}); } } } TEST(${TEST_NAME}, input_offset) { $if ISA_CHECK: ${ISA_CHECK}; for (uint32_t channels = ${ADJCBLOCK + CBLOCK}; channels < ${CR * 16}; channels += ${CR * 3}) { for (uint32_t kernel_size = ${FIRST_PASS_TILE+MIDDLE_PASS_TILE+LAST_PASS_TILE}; kernel_size < ${FIRST_PASS_TILE+MIDDLE_PASS_TILE*2+LAST_PASS_TILE}; kernel_size++) { DWConvMicrokernelTester() .first_pass_tile(${FIRST_PASS_TILE}) .middle_pass_tile(${MIDDLE_PASS_TILE}) .last_pass_tile(${LAST_PASS_TILE}) .channel_tile(${CR}) .channel_subtile(${CHANNEL_SUBTILE}) .channel_round(${CHANNEL_ROUND}) .kernel_size(kernel_size) .channels(channels) .input_offset(${next_prime(CR + 1) * 16}) .Test(${", ".join(TEST_ARGS)}); } } } """ def generate_test_cases(ukernel, first_pass_tile, middle_pass_tile, last_pass_tile, cr, c_block, channel_subtile, channel_round, init_fn, requantization, is_pipelined, isa): """Generates all tests cases for a DWCONV micro-kernel. Args: ukernel: C name of the micro-kernel function. cr: CR parameter of the DWCONV micro-kernel. channel_subtile: channel_subtile parameter of the DWCONV micro-kernel. channel_round: channel_round parameter of the DWCONV micro-kernel. kr: KR parameter of the DWCONV micro-kernel. k_block: Number of C values processed per one iteration of the main loop of the micro-kernel. init_fn: C name of the function to initialize microkernel parameters. requantization: name of the requantization scheme used by the microkernel. is_pipelined: Indicates if the micro-kernel is implemented with software pipelining. Additional test cases are generated for software pipelined micro-kernels to separately test prologue + epiloque of the pipelined loop and iteration of the pipelined loop. isa: instruction set required to run the micro-kernel. Generated unit test will skip execution if the host processor doesn't support this ISA. Returns: Code for the test case. """ kr = first_pass_tile _, test_name = ukernel.split("_", 1) _, datatype, ukernel_type, activation, _ = ukernel.split("_", 4) if activation == "ukernel": activation = "linear" test_args = [ukernel] if init_fn: test_args.append(init_fn) if requantization: requantization_datatype = {"qc8": "qs8"}.get(datatype, datatype) test_args.append("xnn_%s_requantize_%s" % (requantization_datatype, requantization)) return xngen.preprocess(DWCONV_TEST_CODE, { "TEST_NAME": test_name.upper().replace("UKERNEL_", ""), "TEST_ARGS": test_args, "UKERNEL_TYPE": ukernel_type.upper(), "DATATYPE": datatype, "ACTIVATION": activation.upper(), "FIRST_PASS_TILE": first_pass_tile, "MIDDLE_PASS_TILE": middle_pass_tile, "LAST_PASS_TILE": last_pass_tile, "CR": cr, "CHANNEL_SUBTILE": channel_subtile, "CHANNEL_ROUND": channel_round, "KR": kr, "CBLOCK": c_block, "ADJCBLOCK": 2 * c_block if is_pipelined else c_block, "IS_PIPELINED": is_pipelined, "ISA_CHECK": xnncommon.generate_isa_check_macro(isa), "next_prime": next_prime, "sqrt": math.sqrt, }) def main(args): options = parser.parse_args(args) with codecs.open(options.spec, "r", encoding="utf-8") as spec_file: spec_yaml = yaml.safe_load(spec_file) if not isinstance(spec_yaml, list): raise ValueError("expected a list of micro-kernels in the spec") tests = """\ // Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. // // Auto-generated file. Do not edit! // Specification: {specification} // Generator: {generator} #include #include #include #include #include "dwconv-microkernel-tester.h" """.format(specification=options.spec, generator=sys.argv[0]) for ukernel_spec in spec_yaml: name = ukernel_spec["name"] init_fn = ukernel_spec.get("init") pipelined = bool(ukernel_spec.get("pipelined", False)) first_pass_tile, middle_pass_tile, last_pass_tile, cr, channel_subtile, channel_round, requantization, arch, isa, assembly = split_ukernel_name(name) test_case = generate_test_cases( name, first_pass_tile, middle_pass_tile, last_pass_tile, cr, cr, channel_subtile, channel_round, init_fn, requantization, pipelined, isa) tests += "\n\n" + xnncommon.postprocess_test_case(test_case, arch, isa, assembly) txt_changed = True if os.path.exists(options.output): with codecs.open(options.output, "r", encoding="utf-8") as output_file: txt_changed = output_file.read() != tests if txt_changed: with codecs.open(options.output, "w", encoding="utf-8") as output_file: output_file.write(tests) if __name__ == "__main__": main(sys.argv[1:])