// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 8 == 0 $assert KERNEL_TILE >= 2 $assert ACCUMULATORS >= 1 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_f16_dwconv_minmax_ukernel_${KERNEL_TILE}p${CHANNEL_TILE}c__neonfp16arith${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t channels, size_t output_width, const void** input, const void* weights, void* output_ptr, intptr_t input_stride, size_t output_increment, size_t input_offset, const void* zero, const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(channels != 0); assert(output_width != 0); uint16_t* output = (uint16_t*) output_ptr; const float16x8_t vmin = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith.min)); const float16x8_t vmax = vreinterpretq_f16_u16(vld1q_dup_u16(¶ms->fp16arith.max)); do { $for K in range(KERNEL_TILE): const uint16_t* i${K} = (const uint16_t*) input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != (const uint16_t*) zero) { i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); } input = (const void**) ((uintptr_t) input + input_stride); size_t c = channels; const uint16_t* w = (const uint16_t*) weights; for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 8): float16x8_t vacc${ABC[C:C+8]}p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8; $for K in range(KERNEL_TILE): $for C in range(0, CHANNEL_TILE, 8): const float16x8_t vi${K}x${ABC[C:C+8]} = vreinterpretq_f16_u16(vld1q_u16(i${K})); i${K} += 8; $for C in range(0, CHANNEL_TILE, 8): const float16x8_t vk${K}x${ABC[C:C+8]} = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8; $for C in range(0, CHANNEL_TILE, 8): $if 1 <= K < ACCUMULATORS: float16x8_t vacc${ABC[C:C+8]}p${K} = vmulq_f16(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}); $else: vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = vfmaq_f16(vacc${ABC[C:C+8]}p${K % ACCUMULATORS}, vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}); $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_STEP = 1 $while ACC_STEP < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_STEP * 2): $if A + ACC_STEP < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]}p${A} = vaddq_f16(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_STEP}); $ACC_STEP *= 2 $for C in range(0, CHANNEL_TILE, 8): float16x8_t vacc${ABC[C:C+8]} = vmaxq_f16(vacc${ABC[C:C+8]}p0, vmin); $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]} = vminq_f16(vacc${ABC[C:C+8]}, vmax); $for C in range(0, CHANNEL_TILE, 8): vst1q_u16(output, vreinterpretq_u16_f16(vacc${ABC[C:C+8]})); output += 8; } $if CHANNEL_TILE > 8: for (; c >= 8; c -= 8) { float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8; $for K in range(KERNEL_TILE): const float16x8_t vi${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(i${K})); i${K} += 8; const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w + ${(K + 1) * CHANNEL_TILE - 8})); $if 1 <= K < ACCUMULATORS: float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567); $else: vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567); $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_STEP = 1 $while ACC_STEP < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_STEP * 2): $if A + ACC_STEP < ACCUMULATORS: vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP}); $ACC_STEP *= 2 float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin); vacc01234567 = vminq_f16(vacc01234567, vmax); vst1q_u16(output, vreinterpretq_u16_f16(vacc01234567)); output += 8; } if XNN_UNLIKELY(c != 0) { $if CHANNEL_TILE == 8: float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8; $else: float16x8_t vacc01234567p0 = vreinterpretq_f16_u16(vld1q_u16(w)); $for K in range(KERNEL_TILE): const float16x8_t vi${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(i${K})); $if CHANNEL_TILE == 8: const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w)); w += 8; $else: const float16x8_t vk${K}x01234567 = vreinterpretq_f16_u16(vld1q_u16(w + ${(K + 1) * CHANNEL_TILE})); $if 1 <= K < ACCUMULATORS: float16x8_t vacc01234567p${K} = vmulq_f16(vi${K}x01234567, vk${K}x01234567); $else: vacc01234567p${K % ACCUMULATORS} = vfmaq_f16(vacc01234567p${K % ACCUMULATORS}, vi${K}x01234567, vk${K}x01234567); $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_STEP = 1 $while ACC_STEP < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_STEP * 2): $if A + ACC_STEP < ACCUMULATORS: vacc01234567p${A} = vaddq_f16(vacc01234567p${A}, vacc01234567p${A + ACC_STEP}); $ACC_STEP *= 2 float16x8_t vacc01234567 = vmaxq_f16(vacc01234567p0, vmin); vacc01234567 = vminq_f16(vacc01234567, vmax); float16x4_t vacc0123 = vget_low_f16(vacc01234567); if (c & 4) { vst1_u16(output, vreinterpret_u16_f16(vacc0123)); output += 4; vacc0123 = vget_high_f16(vacc01234567); } if (c & 2) { vst1_lane_u32((void*) output, vreinterpret_u32_f16(vacc0123), 0); output += 2; vacc0123 = vext_f16(vacc0123, vacc0123, 2); } if (c & 1) { vst1_lane_u16(output, vreinterpret_u16_f16(vacc0123), 0); output += 1; } } output = (uint16_t*) ((uintptr_t) output + output_increment); } while (--output_width != 0); }