// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $CHANNEL_SUBTILE = 8 $assert CHANNEL_TILE % CHANNEL_SUBTILE == 0 $CHANNEL_ROUND = 4 $assert MIDDLE_PASS_TILE <= LAST_PASS_TILE $assert FIRST_PASS_TILE >= 1 $assert MIDDLE_PASS_TILE >= 1 $assert LAST_PASS_TILE >= 1 $assert ACCUMULATORS >= 1 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include #include #include #include void xnn_f16_dwconv_minmax_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__fma3${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t channels, size_t output_width, const void** input, const void* weights, void* output, intptr_t input_stride, size_t output_increment, size_t input_offset, const void* zero, size_t kernel_size, void* buffer, const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(channels != 0); assert(output_width != 0); assert(kernel_size > ${FIRST_PASS_TILE}); const __m256 vmax = _mm256_load_ps(params->avx.max); const __m256 vmin = _mm256_load_ps(params->avx.min); do { const uint16_t* w = weights; // First pass to process ${FIRST_PASS_TILE} inputs. { uint16_t* b = buffer; $for K in range(FIRST_PASS_TILE): const uint16_t* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); } input += ${FIRST_PASS_TILE}; // Process c channels and write to buffer. size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); $if CHANNEL_TILE > 8: for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 8): $if C == 0: __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); $else: __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${C}))); $for K in range(FIRST_PASS_TILE): $for C in range(0, CHANNEL_TILE, 8): $if C == 0: const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); $else: const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 8): const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_TILE + C}))); $for C in range(0, CHANNEL_TILE, 8): $if 1 <= K < ACCUMULATORS: __m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); $else: vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:8]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 8): $if C == 0: _mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); $else: _mm_store_si128((__m128i*) (b + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); b += ${CHANNEL_TILE}; } for (; c >= ${CHANNEL_SUBTILE}; c -= ${CHANNEL_SUBTILE}) { __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); $for K in range(FIRST_PASS_TILE): const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); i${K} += ${CHANNEL_SUBTILE}; const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_SUBTILE}))); $if 1 <= K < ACCUMULATORS: __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); $else: vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 _mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); b += ${CHANNEL_SUBTILE}; } if (c != 0) { assert(c >= 1); assert(c <= ${CHANNEL_SUBTILE-1}); __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) w)); $for K in range(FIRST_PASS_TILE): const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K + 1) * CHANNEL_SUBTILE}))); $if 1 <= K < ACCUMULATORS: __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); $else: vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_SUBTILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 _mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); } } // Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration. for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) { uint16_t* b = buffer; $for K in range(MIDDLE_PASS_TILE): const uint16_t* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); } input += ${MIDDLE_PASS_TILE}; size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); $if CHANNEL_TILE > 8: for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 8): $if C == 0: __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); $else: __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b + ${C}))); $for K in range(MIDDLE_PASS_TILE): $for C in range(0, CHANNEL_TILE, 8): $if C == 0: const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); $else: const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 8): $if K == 0 and C == 0: const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); $else: const __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_TILE + C}))); $for C in range(0, CHANNEL_TILE, 8): $if 1 <= K < ACCUMULATORS: __m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); $else: vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${MIDDLE_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:8]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 8): $if C == 0: _mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); $else: _mm_store_si128((__m128i*) (b + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}p0, _MM_FROUND_TO_NEAREST_INT)); b += ${CHANNEL_TILE}; } for (; c >= 8; c -= 8) { __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); $for K in range(MIDDLE_PASS_TILE): const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); i${K} += ${CHANNEL_SUBTILE}; $if K == 0: const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); $else: const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_SUBTILE}))); $if 1 <= K < ACCUMULATORS: __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); $else: vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${MIDDLE_PASS_TILE * CHANNEL_SUBTILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 _mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); b += ${CHANNEL_SUBTILE}; } if (c != 0) { assert(c >= 1); assert(c <= ${CHANNEL_SUBTILE-1}); __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); $for K in range(MIDDLE_PASS_TILE): const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); $if K == 0: const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); $else: const __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${(K) * CHANNEL_SUBTILE}))); $if 1 <= K < ACCUMULATORS: __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); $else: vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${(MIDDLE_PASS_TILE) * CHANNEL_SUBTILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 _mm_store_si128((__m128i*) b, _mm256_cvtps_ph(vacc01234567p0, _MM_FROUND_TO_NEAREST_INT)); } } // Last pass to process up to ${LAST_PASS_TILE} inputs. { uint16_t* b = buffer; $for K in range(0, LAST_PASS_TILE): const uint16_t* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const uint16_t*) ((uintptr_t) i${K} + input_offset); } size_t c = channels; $if CHANNEL_TILE > 8: for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 8): $if C == 0: __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); $else: __m256 vacc${ABC[C:C+8]}p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b + ${C}))); b += ${CHANNEL_TILE}; $for K in range(LAST_PASS_TILE): $for C in range(0, CHANNEL_TILE, 8): $if C == 0: const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); $else: const __m256 vi${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K} + ${C}))); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 8): $if K == 0 and C == 0: __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); $else: __m256 vk${K}x${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * CHANNEL_TILE + C}))); $for C in range(0, CHANNEL_TILE, 8): $if 1 <= K < ACCUMULATORS: __m256 vacc${ABC[C:C+8]}p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); $else: vacc${ABC[C:C+8]}p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x${ABC[C:C+8]}, vk${K}x${ABC[C:C+8]}, vacc${ABC[C:C+8]}p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); w += ${LAST_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:8]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]}p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc${ABC[C:C+8]}p${A}, vacc${ABC[C:C+8]}p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 8): __m256 vacc${ABC[C:C+8]} = _mm256_max_ps(vacc${ABC[C:C+8]}p0, vmin); $for C in range(0, CHANNEL_TILE, 8): vacc${ABC[C:C+8]} = _mm256_min_ps(vacc${ABC[C:C+8]}, vmax); $for C in range(0, CHANNEL_TILE, 8): $if C == 0: _mm_storeu_si128((__m128i*) output, _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT)); $else: _mm_storeu_si128((__m128i*) ((uint16_t*) output + ${C}), _mm256_cvtps_ph(vacc${ABC[C:C+8]}, _MM_FROUND_TO_NEAREST_INT)); output = (uint16_t*) output + ${CHANNEL_TILE}; } for (; c >= 8; c -= 8) { __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); b += 8; $for K in range(LAST_PASS_TILE): const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i${K}))); i${K} += 8; $if K == 0: __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); $else: __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * 8}))); $if 1 <= K < ACCUMULATORS: __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); $else: vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); $if CHANNEL_TILE > 8: w += ${LAST_PASS_TILE * 8}; $else: w += ${LAST_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc01234567p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 __m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin); vacc01234567 = _mm256_min_ps(vacc01234567, vmax); _mm_storeu_si128((__m128i*) output, _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT)); output = (uint16_t*) output + 8; } if XNN_UNLIKELY(c != 0) { assert(c >= 1); assert(c <= ${CHANNEL_SUBTILE-1}); __m256 vacc01234567p0 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (b))); $for K in range(LAST_PASS_TILE): const __m256 vi${K}x01234567 = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i${K})); $if K == 0: __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w))); $else: __m256 vk${K}x01234567 = _mm256_cvtph_ps(_mm_load_si128((const __m128i*) (w + ${K * 8}))); $if 1 <= K < ACCUMULATORS: __m256 vacc01234567p${K} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_mul_ps(vi${K}x01234567, vk${K}x01234567), _MM_FROUND_TO_NEAREST_INT)); $else: vacc01234567p${K % ACCUMULATORS} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vi${K}x01234567, vk${K}x01234567, vacc01234567p${K % ACCUMULATORS}), _MM_FROUND_TO_NEAREST_INT)); $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:8]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc01234567p${A} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_add_ps(vacc01234567p${A}, vacc01234567p${A + ACC_SLICE}), _MM_FROUND_TO_NEAREST_INT)); $ACC_SLICE *= 2 __m256 vacc01234567 = _mm256_max_ps(vacc01234567p0, vmin); vacc01234567 = _mm256_min_ps(vacc01234567, vmax); __m128i vh01234567 = _mm256_cvtps_ph(vacc01234567, _MM_FROUND_TO_NEAREST_INT); if (c & 4) { _mm_storel_epi64((__m128i*) output, vh01234567); vh01234567 = _mm_unpackhi_epi64(vh01234567, vh01234567); output = (uint16_t*) output + 4; } if (c & 2) { _mm_storeu_si32(output, vh01234567); vh01234567 = _mm_srli_epi64(vh01234567, 32); output = (uint16_t*) output + 2; } if (c & 1) { *((uint16_t*) output) = (uint16_t) _mm_extract_epi16(vh01234567, 0); output = (uint16_t*) output + 1; } } } input = (const void**) (const uint16_t**) ((uintptr_t) input + input_stride); output = (uint16_t*) ((uintptr_t) output + output_increment); } while (--output_width != 0); }