// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include #include #include #include "bench/utils.h" #include #include #include struct ComputeErrorContext { const uint16_t* input; const uint16_t* output; float* error; }; static void ComputeError( struct ComputeErrorContext* context, size_t start, size_t range) { const uint16_t* input = context->input; const uint16_t* output = context->output; float* error = context->error; for (size_t i = start; i < start + range; i++) { const float input_val = fp16_ieee_to_fp32_value(input[i]); float output_ref = 0.0f; if (input_val < 0.0f) { const float exp_val = std::exp(input_val); output_ref = exp_val / (1.0f + exp_val); } else { output_ref = 1.0f / (1.0f + std::exp(-input_val)); } const float abs_error = std::abs(output_ref - fp16_ieee_to_fp32_value(output[i])); const uint16_t output_abs = fp16_ieee_from_fp32_value(std::abs(output_ref)); const float output_ulp = fp16_ieee_to_fp32_value(output_abs + 1) - fp16_ieee_to_fp32_value(output_abs); error[i] = float(abs_error / output_ulp); } } static void SigmoidError(benchmark::State& state, xnn_f16_unary_math_fn sigmoid, benchmark::utils::IsaCheckFunction isa_check = nullptr) { if (!cpuinfo_initialize()) { state.SkipWithError("failed cpuinfo init"); return; } if (isa_check != nullptr && !isa_check(state)) { return; } // The smallest x for which sigmoidf(x) is normalized (-0x1.368p+3h). const uint16_t min_input = UINT16_C(0xC8DA); // The largest x for which sigmoidf(x) is not 1.0f (0x1.0A0p3h). const uint16_t max_input = UINT16_C(0x4828); // Number of elements in one block of inputs/outputs. // Combining multiple elements in a block reduce function call overhead. const size_t block_size = 16384; // Number of elements in one parallelization tile. Worker threads process this many elements in each task. const size_t tile_size = 64; uint32_t num_threads = cpuinfo_get_cores_count(); #if XNN_ARCH_ARM || XNN_ARCH_ARM64 // Use all cores except for the least performant cluster if (cpuinfo_get_clusters_count() > 1) { num_threads -= cpuinfo_get_cluster(cpuinfo_get_clusters_count() - 1)->core_count; } #endif // XNN_ARCH_ARM || XNN_ARCH_ARM64 std::unique_ptr threadpool( pthreadpool_create(num_threads), pthreadpool_destroy); std::vector> x(block_size); std::vector> y(block_size); std::vector ulp_error(block_size); float max_ulp_error = 0.0f; ComputeErrorContext context; context.input = x.data(); context.output = y.data(); context.error = ulp_error.data(); for (auto _ : state) { for (uint16_t n = min_input; int16_t(n) < 0; n -= block_size) { for (uint16_t i = 0; i < block_size; i++) { x[i] = std::max(n - i, UINT16_C(0x8000)); } std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); sigmoid(block_size * sizeof(uint16_t), x.data(), y.data()); pthreadpool_parallelize_1d_tile_1d( threadpool.get(), reinterpret_cast(ComputeError), static_cast(&context), block_size, tile_size, 0 /* flags */); max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error, static_cast(std::max)); } for (uint16_t n = 0; n < max_input; n += block_size) { for (uint16_t i = 0; i < block_size; i++) { x[i] = std::min(n + i, max_input); } std::fill(y.begin(), y.end(), UINT16_C(0x7E00) /* NaN */); sigmoid(block_size * sizeof(uint16_t), x.data(), y.data()); pthreadpool_parallelize_1d_tile_1d( threadpool.get(), reinterpret_cast(ComputeError), static_cast(&context), block_size, tile_size, 0 /* flags */); max_ulp_error = std::accumulate(ulp_error.cbegin(), ulp_error.cend(), max_ulp_error, static_cast(std::max)); } } state.counters["ULPERROR"] = benchmark::Counter(max_ulp_error); } #if XNN_ENABLE_ARM_FP16_VECTOR && XNN_ARCH_ARM64 BENCHMARK_CAPTURE(SigmoidError, aarch64_neonfp16arith_rr1_p2_div, xnn_math_f16_sigmoid__aarch64_neonfp16arith_rr1_p2_div, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, aarch64_neonfp16arith_rr1_p3_div, xnn_math_f16_sigmoid__aarch64_neonfp16arith_rr1_p3_div, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, aarch64_neonfp16arith_rr2_p2_div, xnn_math_f16_sigmoid__aarch64_neonfp16arith_rr2_p2_div, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, aarch64_neonfp16arith_rr2_p3_div, xnn_math_f16_sigmoid__aarch64_neonfp16arith_rr2_p3_div, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); #endif // XNN_ENABLE_ARM_FP16_VECTOR && XNN_ARCH_ARM64 #if XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64) BENCHMARK_CAPTURE(SigmoidError, neonfp16arith_rr2_p2_nr1fma, xnn_math_f16_sigmoid__neonfp16arith_rr2_p2_nr1fma, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, neonfp16arith_rr2_p2_nr1recps, xnn_math_f16_sigmoid__neonfp16arith_rr2_p2_nr1recps, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, neonfp16arith_rr2_p2_recpe, xnn_math_f16_sigmoid__neonfp16arith_rr2_p2_recpe, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, neonfp16arith_rr2_p3_nr1fma, xnn_math_f16_sigmoid__neonfp16arith_rr2_p3_nr1fma, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, neonfp16arith_rr2_p3_nr1recps, xnn_math_f16_sigmoid__neonfp16arith_rr2_p3_nr1recps, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, neonfp16arith_rr2_p3_recpe, xnn_math_f16_sigmoid__neonfp16arith_rr2_p3_recpe, benchmark::utils::CheckNEONFP16ARITH) ->Unit(benchmark::kMillisecond) ->Iterations(1); #endif // XNN_ENABLE_ARM_FP16_VECTOR && (XNN_ARCH_ARM || XNN_ARCH_ARM64) #if XNN_ARCH_X86 || XNN_ARCH_X86_64 BENCHMARK_CAPTURE(SigmoidError, avx2_rr1_p2_div, xnn_math_f16_sigmoid__avx2_rr1_p2_div, benchmark::utils::CheckAVX2) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, avx2_rr1_p2_rcp, xnn_math_f16_sigmoid__avx2_rr1_p2_rcp, benchmark::utils::CheckAVX2) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, avx2_rr1_p3_div, xnn_math_f16_sigmoid__avx2_rr1_p3_div, benchmark::utils::CheckAVX2) ->Unit(benchmark::kMillisecond) ->Iterations(1); BENCHMARK_CAPTURE(SigmoidError, avx2_rr1_p3_rcp, xnn_math_f16_sigmoid__avx2_rr1_p3_rcp, benchmark::utils::CheckAVX2) ->Unit(benchmark::kMillisecond) ->Iterations(1); #endif // XNN_ARCH_X86 || XNN_ARCH_X86_64 #ifndef XNNPACK_BENCHMARK_NO_MAIN BENCHMARK_MAIN(); #endif