// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert ROW_TILE >= 1 $assert ACCUMULATORS >= 1 #include #include #include void xnn_f32_dwconv2d_chw_ukernel_3x3s2p1__scalar_${ROW_TILE}x1${"_acc%d" % ACCUMULATORS if ACCUMULATORS > 1 else ""}( size_t input_height, size_t input_width, const float* input, const float* weights, const float* zero, float* output, uint32_t padding_top, const union xnn_f32_chw_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(input_height != 0); assert(input_width != 0); assert(input_width % sizeof(float) == 0); assert(padding_top >= 0); assert(padding_top <= 1); const float vmin = params->scalar.min; const float vmax = params->scalar.max; const float vbias = weights[0]; const float vk00 = weights[1]; const float vk01 = weights[2]; const float vk02 = weights[3]; const float vk10 = weights[4]; const float vk11 = weights[5]; const float vk12 = weights[6]; const float vk20 = weights[7]; const float vk21 = weights[8]; const float vk22 = weights[9]; $if ROW_TILE > 1: const size_t output_width = round_down_po2((input_width + (2 /* padding */ - 3 /* kernel size */ + 2 /* subsampling */) * sizeof(float)) / 2, sizeof(float)); const float* i0 = (const float*) ((uintptr_t) input - ((-padding_top) & input_width)); const float* i1 = (const float*) ((uintptr_t) i0 + input_width); if XNN_UNPREDICTABLE(padding_top != 0) { i0 = zero; } $for M in range(2, 1 + 2 * ROW_TILE): const float* i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); float* o0 = output; $for M in range(1, ROW_TILE): float* o${M} = (float*) ((uintptr_t) o${M-1} + output_width); size_t padded_input_height = input_height + padding_top + 1 /* padding bottom */; size_t output_height = (padded_input_height - 3 /* kernel size */ + 2 /* subsampling */) / 2; do { $for M in range(2, 1 + 2 * ROW_TILE): if XNN_UNPREDICTABLE(padded_input_height < ${2 + M}) { i${M} = zero; $if M % 2 == 1: o${(M - 1) // 2} = o${(M - 1) // 2 - 1}; } $for M in range(1 + 2 * ROW_TILE): float vi${M}x0 = 0.0f; size_t w = input_width; for (; w >= 2 * sizeof(float); w -= 2 * sizeof(float)) { $for M in range(1 + 2 * ROW_TILE): const float vi${M}x1 = i${M}[0]; $for K in range(3): $for M in range(ROW_TILE): $if K == 0: float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; $elif K < ACCUMULATORS: float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; $else: vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; $for M in range(1 + 2 * ROW_TILE): const float vi${M}x2 = i${M}[1]; i${M} += 2; $for K in range(3): $for M in range(ROW_TILE): $if K + 3 < ACCUMULATORS: float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1; $else: vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; $for M in range(1 + 2 * ROW_TILE): vi${M}x0 = vi${M}x2; $for K in range(3): $for M in range(ROW_TILE): vo${M}p${(K+6) % ACCUMULATORS} += vi${2*M+K}x2 * vk${K}2; $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for M in range(ROW_TILE): vo${M}p${A} += vo${M}p${A + ACC_SLICE}; $ACC_SLICE *= 2 $for M in range(ROW_TILE): float vo${M} = math_max_f32(vo${M}p0, vmin); $for M in range(ROW_TILE): vo${M} = math_min_f32(vo${M}, vmax); $for M in reversed(range(ROW_TILE)): *o${M}++ = vo${M}; } // Potentially process the last pixel. assert(w <= 1 * sizeof(float)); if (w != 0) { $for M in range(1 + 2 * ROW_TILE): const float vi${M}x1 = *i${M}++; $for K in range(3): $for M in range(ROW_TILE): $if K == 0: float vo${M}p0 = vbias + vi${2*M+K}x0 * vk${K}0; $elif K < ACCUMULATORS: float vo${M}p${K} = vi${2*M+K}x0 * vk${K}0; $else: vo${M}p${K % ACCUMULATORS} += vi${2*M+K}x0 * vk${K}0; $for K in range(3): $for M in range(ROW_TILE): $if K + 3 < ACCUMULATORS: float vo${M}p${K+3} = vi${2*M+K}x1 * vk${K}1; $else: vo${M}p${(K+3) % ACCUMULATORS} += vi${2*M+K}x1 * vk${K}1; $if ACCUMULATORS > 1: $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for M in range(ROW_TILE): vo${M}p${A} += vo${M}p${A + ACC_SLICE}; $ACC_SLICE *= 2 $for M in range(ROW_TILE): float vo${M} = math_max_f32(vo${M}p0, vmin); $for M in range(ROW_TILE): vo${M} = math_min_f32(vo${M}, vmax); $for M in reversed(range(ROW_TILE)): *o${M}++ = vo${M}; } i0 = (const float*) ((uintptr_t) i${2 * ROW_TILE - 1}); i1 = (const float*) ((uintptr_t) i${2 * ROW_TILE}); $for M in range(2, 1 + 2 * ROW_TILE): i${M} = (const float*) ((uintptr_t) i${M-1} + input_width); $if ROW_TILE > 1: o0 = o${ROW_TILE - 1}; $for M in range(1, ROW_TILE): o${M} = (float*) ((uintptr_t) o${M-1} + output_width); $if ROW_TILE > 1: output_height = doz(output_height, ${ROW_TILE}); padded_input_height = doz(padded_input_height, ${ROW_TILE * 2}); $else: output_height -= 1; padded_input_height -= 2; } while (output_height != 0); }