#include #include #include #include #include #include #include #include static inline uint32_t max(uint32_t a, uint32_t b) { return a > b ? a : b; } static inline uint32_t bit_mask(uint32_t bits) { return (UINT32_C(1) << bits) - UINT32_C(1); } void cpuinfo_x86_mach_init(void) { struct cpuinfo_processor* processors = NULL; struct cpuinfo_core* cores = NULL; struct cpuinfo_cluster* clusters = NULL; struct cpuinfo_package* packages = NULL; struct cpuinfo_cache* l1i = NULL; struct cpuinfo_cache* l1d = NULL; struct cpuinfo_cache* l2 = NULL; struct cpuinfo_cache* l3 = NULL; struct cpuinfo_cache* l4 = NULL; struct cpuinfo_mach_topology mach_topology = cpuinfo_mach_detect_topology(); processors = calloc(mach_topology.threads, sizeof(struct cpuinfo_processor)); if (processors == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors", mach_topology.threads * sizeof(struct cpuinfo_processor), mach_topology.threads); goto cleanup; } cores = calloc(mach_topology.cores, sizeof(struct cpuinfo_core)); if (cores == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores", mach_topology.cores * sizeof(struct cpuinfo_core), mach_topology.cores); goto cleanup; } /* On x86 cluster of cores is a physical package */ clusters = calloc(mach_topology.packages, sizeof(struct cpuinfo_cluster)); if (clusters == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters", mach_topology.packages * sizeof(struct cpuinfo_cluster), mach_topology.packages); goto cleanup; } packages = calloc(mach_topology.packages, sizeof(struct cpuinfo_package)); if (packages == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages", mach_topology.packages * sizeof(struct cpuinfo_package), mach_topology.packages); goto cleanup; } struct cpuinfo_x86_processor x86_processor; memset(&x86_processor, 0, sizeof(x86_processor)); cpuinfo_x86_init_processor(&x86_processor); char brand_string[48]; cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string); const uint32_t threads_per_core = mach_topology.threads / mach_topology.cores; const uint32_t threads_per_package = mach_topology.threads / mach_topology.packages; const uint32_t cores_per_package = mach_topology.cores / mach_topology.packages; for (uint32_t i = 0; i < mach_topology.packages; i++) { clusters[i] = (struct cpuinfo_cluster) { .processor_start = i * threads_per_package, .processor_count = threads_per_package, .core_start = i * cores_per_package, .core_count = cores_per_package, .cluster_id = 0, .package = packages + i, .vendor = x86_processor.vendor, .uarch = x86_processor.uarch, .cpuid = x86_processor.cpuid, }; packages[i].processor_start = i * threads_per_package; packages[i].processor_count = threads_per_package; packages[i].core_start = i * cores_per_package; packages[i].core_count = cores_per_package; packages[i].cluster_start = i; packages[i].cluster_count = 1; cpuinfo_x86_format_package_name(x86_processor.vendor, brand_string, packages[i].name); } for (uint32_t i = 0; i < mach_topology.cores; i++) { cores[i] = (struct cpuinfo_core) { .processor_start = i * threads_per_core, .processor_count = threads_per_core, .core_id = i % cores_per_package, .cluster = clusters + i / cores_per_package, .package = packages + i / cores_per_package, .vendor = x86_processor.vendor, .uarch = x86_processor.uarch, .cpuid = x86_processor.cpuid, }; } for (uint32_t i = 0; i < mach_topology.threads; i++) { const uint32_t smt_id = i % threads_per_core; const uint32_t core_id = i / threads_per_core; const uint32_t package_id = i / threads_per_package; /* Reconstruct APIC IDs from topology components */ const uint32_t thread_bits_mask = bit_mask(x86_processor.topology.thread_bits_length); const uint32_t core_bits_mask = bit_mask(x86_processor.topology.core_bits_length); const uint32_t package_bits_offset = max( x86_processor.topology.thread_bits_offset + x86_processor.topology.thread_bits_length, x86_processor.topology.core_bits_offset + x86_processor.topology.core_bits_length); const uint32_t apic_id = ((smt_id & thread_bits_mask) << x86_processor.topology.thread_bits_offset) | ((core_id & core_bits_mask) << x86_processor.topology.core_bits_offset) | (package_id << package_bits_offset); cpuinfo_log_debug("reconstructed APIC ID 0x%08"PRIx32" for thread %"PRIu32, apic_id, i); processors[i].smt_id = smt_id; processors[i].core = cores + i / threads_per_core; processors[i].cluster = clusters + i / threads_per_package; processors[i].package = packages + i / threads_per_package; processors[i].apic_id = apic_id; } uint32_t threads_per_l1 = 0, l1_count = 0; if (x86_processor.cache.l1i.size != 0 || x86_processor.cache.l1d.size != 0) { threads_per_l1 = mach_topology.threads_per_cache[1]; if (threads_per_l1 == 0) { /* Assume that threads on the same core share L1 */ threads_per_l1 = mach_topology.threads / mach_topology.cores; cpuinfo_log_warning("Mach kernel did not report number of threads sharing L1 cache; assume %"PRIu32, threads_per_l1); } l1_count = mach_topology.threads / threads_per_l1; cpuinfo_log_debug("detected %"PRIu32" L1 caches", l1_count); } uint32_t threads_per_l2 = 0, l2_count = 0; if (x86_processor.cache.l2.size != 0) { threads_per_l2 = mach_topology.threads_per_cache[2]; if (threads_per_l2 == 0) { if (x86_processor.cache.l3.size != 0) { /* This is not a last-level cache; assume that threads on the same core share L2 */ threads_per_l2 = mach_topology.threads / mach_topology.cores; } else { /* This is a last-level cache; assume that threads on the same package share L2 */ threads_per_l2 = mach_topology.threads / mach_topology.packages; } cpuinfo_log_warning("Mach kernel did not report number of threads sharing L2 cache; assume %"PRIu32, threads_per_l2); } l2_count = mach_topology.threads / threads_per_l2; cpuinfo_log_debug("detected %"PRIu32" L2 caches", l2_count); } uint32_t threads_per_l3 = 0, l3_count = 0; if (x86_processor.cache.l3.size != 0) { threads_per_l3 = mach_topology.threads_per_cache[3]; if (threads_per_l3 == 0) { /* * Assume that threads on the same package share L3. * However, is it not necessarily the last-level cache (there may be L4 cache as well) */ threads_per_l3 = mach_topology.threads / mach_topology.packages; cpuinfo_log_warning("Mach kernel did not report number of threads sharing L3 cache; assume %"PRIu32, threads_per_l3); } l3_count = mach_topology.threads / threads_per_l3; cpuinfo_log_debug("detected %"PRIu32" L3 caches", l3_count); } uint32_t threads_per_l4 = 0, l4_count = 0; if (x86_processor.cache.l4.size != 0) { threads_per_l4 = mach_topology.threads_per_cache[4]; if (threads_per_l4 == 0) { /* * Assume that all threads share this L4. * As of now, L4 cache exists only on notebook x86 CPUs, which are single-package, * but multi-socket systems could have shared L4 (like on IBM POWER8). */ threads_per_l4 = mach_topology.threads; cpuinfo_log_warning("Mach kernel did not report number of threads sharing L4 cache; assume %"PRIu32, threads_per_l4); } l4_count = mach_topology.threads / threads_per_l4; cpuinfo_log_debug("detected %"PRIu32" L4 caches", l4_count); } if (x86_processor.cache.l1i.size != 0) { l1i = calloc(l1_count, sizeof(struct cpuinfo_cache)); if (l1i == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches", l1_count * sizeof(struct cpuinfo_cache), l1_count); return; } for (uint32_t c = 0; c < l1_count; c++) { l1i[c] = (struct cpuinfo_cache) { .size = x86_processor.cache.l1i.size, .associativity = x86_processor.cache.l1i.associativity, .sets = x86_processor.cache.l1i.sets, .partitions = x86_processor.cache.l1i.partitions, .line_size = x86_processor.cache.l1i.line_size, .flags = x86_processor.cache.l1i.flags, .processor_start = c * threads_per_l1, .processor_count = threads_per_l1, }; } for (uint32_t t = 0; t < mach_topology.threads; t++) { processors[t].cache.l1i = &l1i[t / threads_per_l1]; } } if (x86_processor.cache.l1d.size != 0) { l1d = calloc(l1_count, sizeof(struct cpuinfo_cache)); if (l1d == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches", l1_count * sizeof(struct cpuinfo_cache), l1_count); return; } for (uint32_t c = 0; c < l1_count; c++) { l1d[c] = (struct cpuinfo_cache) { .size = x86_processor.cache.l1d.size, .associativity = x86_processor.cache.l1d.associativity, .sets = x86_processor.cache.l1d.sets, .partitions = x86_processor.cache.l1d.partitions, .line_size = x86_processor.cache.l1d.line_size, .flags = x86_processor.cache.l1d.flags, .processor_start = c * threads_per_l1, .processor_count = threads_per_l1, }; } for (uint32_t t = 0; t < mach_topology.threads; t++) { processors[t].cache.l1d = &l1d[t / threads_per_l1]; } } if (l2_count != 0) { l2 = calloc(l2_count, sizeof(struct cpuinfo_cache)); if (l2 == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches", l2_count * sizeof(struct cpuinfo_cache), l2_count); return; } for (uint32_t c = 0; c < l2_count; c++) { l2[c] = (struct cpuinfo_cache) { .size = x86_processor.cache.l2.size, .associativity = x86_processor.cache.l2.associativity, .sets = x86_processor.cache.l2.sets, .partitions = x86_processor.cache.l2.partitions, .line_size = x86_processor.cache.l2.line_size, .flags = x86_processor.cache.l2.flags, .processor_start = c * threads_per_l2, .processor_count = threads_per_l2, }; } for (uint32_t t = 0; t < mach_topology.threads; t++) { processors[t].cache.l2 = &l2[t / threads_per_l2]; } } if (l3_count != 0) { l3 = calloc(l3_count, sizeof(struct cpuinfo_cache)); if (l3 == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches", l3_count * sizeof(struct cpuinfo_cache), l3_count); return; } for (uint32_t c = 0; c < l3_count; c++) { l3[c] = (struct cpuinfo_cache) { .size = x86_processor.cache.l3.size, .associativity = x86_processor.cache.l3.associativity, .sets = x86_processor.cache.l3.sets, .partitions = x86_processor.cache.l3.partitions, .line_size = x86_processor.cache.l3.line_size, .flags = x86_processor.cache.l3.flags, .processor_start = c * threads_per_l3, .processor_count = threads_per_l3, }; } for (uint32_t t = 0; t < mach_topology.threads; t++) { processors[t].cache.l3 = &l3[t / threads_per_l3]; } } if (l4_count != 0) { l4 = calloc(l4_count, sizeof(struct cpuinfo_cache)); if (l4 == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L4 caches", l4_count * sizeof(struct cpuinfo_cache), l4_count); return; } for (uint32_t c = 0; c < l4_count; c++) { l4[c] = (struct cpuinfo_cache) { .size = x86_processor.cache.l4.size, .associativity = x86_processor.cache.l4.associativity, .sets = x86_processor.cache.l4.sets, .partitions = x86_processor.cache.l4.partitions, .line_size = x86_processor.cache.l4.line_size, .flags = x86_processor.cache.l4.flags, .processor_start = c * threads_per_l4, .processor_count = threads_per_l4, }; } for (uint32_t t = 0; t < mach_topology.threads; t++) { processors[t].cache.l4 = &l4[t / threads_per_l4]; } } /* Commit changes */ cpuinfo_processors = processors; cpuinfo_cores = cores; cpuinfo_clusters = clusters; cpuinfo_packages = packages; cpuinfo_cache[cpuinfo_cache_level_1i] = l1i; cpuinfo_cache[cpuinfo_cache_level_1d] = l1d; cpuinfo_cache[cpuinfo_cache_level_2] = l2; cpuinfo_cache[cpuinfo_cache_level_3] = l3; cpuinfo_cache[cpuinfo_cache_level_4] = l4; cpuinfo_processors_count = mach_topology.threads; cpuinfo_cores_count = mach_topology.cores; cpuinfo_clusters_count = mach_topology.packages; cpuinfo_packages_count = mach_topology.packages; cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1_count; cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1_count; cpuinfo_cache_count[cpuinfo_cache_level_2] = l2_count; cpuinfo_cache_count[cpuinfo_cache_level_3] = l3_count; cpuinfo_cache_count[cpuinfo_cache_level_4] = l4_count; cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]); cpuinfo_global_uarch = (struct cpuinfo_uarch_info) { .uarch = x86_processor.uarch, .cpuid = x86_processor.cpuid, .processor_count = mach_topology.threads, .core_count = mach_topology.cores, }; __sync_synchronize(); cpuinfo_is_initialized = true; processors = NULL; cores = NULL; clusters = NULL; packages = NULL; l1i = l1d = l2 = l3 = l4 = NULL; cleanup: free(processors); free(cores); free(clusters); free(packages); free(l1i); free(l1d); free(l2); free(l3); free(l4); }