#include #include #include #include #include #include #include #include #include #include static inline uint32_t bit_mask(uint32_t bits) { return (UINT32_C(1) << bits) - UINT32_C(1); } static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) { return (bitfield & mask) == mask; } static inline uint32_t min(uint32_t a, uint32_t b) { return a < b ? a : b; } static inline int cmp(uint32_t a, uint32_t b) { return (a > b) - (a < b); } static int cmp_x86_linux_processor(const void* ptr_a, const void* ptr_b) { const struct cpuinfo_x86_linux_processor* processor_a = (const struct cpuinfo_x86_linux_processor*) ptr_a; const struct cpuinfo_x86_linux_processor* processor_b = (const struct cpuinfo_x86_linux_processor*) ptr_b; /* Move usable processors towards the start of the array */ const bool usable_a = bitmask_all(processor_a->flags, CPUINFO_LINUX_FLAG_VALID); const bool usable_b = bitmask_all(processor_b->flags, CPUINFO_LINUX_FLAG_VALID); if (usable_a != usable_b) { return (int) usable_b - (int) usable_a; } /* Compare based on APIC ID (i.e. processor 0 < processor 1) */ const uint32_t id_a = processor_a->apic_id; const uint32_t id_b = processor_b->apic_id; return cmp(id_a, id_b); } static void cpuinfo_x86_count_objects( uint32_t linux_processors_count, const struct cpuinfo_x86_linux_processor linux_processors[restrict static linux_processors_count], const struct cpuinfo_x86_processor processor[restrict static 1], uint32_t valid_processor_mask, uint32_t llc_apic_bits, uint32_t cores_count_ptr[restrict static 1], uint32_t clusters_count_ptr[restrict static 1], uint32_t packages_count_ptr[restrict static 1], uint32_t l1i_count_ptr[restrict static 1], uint32_t l1d_count_ptr[restrict static 1], uint32_t l2_count_ptr[restrict static 1], uint32_t l3_count_ptr[restrict static 1], uint32_t l4_count_ptr[restrict static 1]) { const uint32_t core_apic_mask = ~(bit_mask(processor->topology.thread_bits_length) << processor->topology.thread_bits_offset); const uint32_t package_apic_mask = core_apic_mask & ~(bit_mask(processor->topology.core_bits_length) << processor->topology.core_bits_offset); const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits); const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask; uint32_t cores_count = 0, clusters_count = 0, packages_count = 0; uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0; uint32_t last_core_id = UINT32_MAX, last_cluster_id = UINT32_MAX, last_package_id = UINT32_MAX; uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX; uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX; for (uint32_t i = 0; i < linux_processors_count; i++) { if (bitmask_all(linux_processors[i].flags, valid_processor_mask)) { const uint32_t apic_id = linux_processors[i].apic_id; cpuinfo_log_debug("APID ID %"PRIu32": system processor %"PRIu32, apic_id, linux_processors[i].linux_id); /* All bits of APIC ID except thread ID mask */ const uint32_t core_id = apic_id & core_apic_mask; if (core_id != last_core_id) { last_core_id = core_id; cores_count++; } /* All bits of APIC ID except thread ID and core ID masks */ const uint32_t package_id = apic_id & package_apic_mask; if (package_id != last_package_id) { last_package_id = package_id; packages_count++; } /* Bits of APIC ID which are part of either LLC or package ID mask */ const uint32_t cluster_id = apic_id & cluster_apic_mask; if (cluster_id != last_cluster_id) { last_cluster_id = cluster_id; clusters_count++; } if (processor->cache.l1i.size != 0) { const uint32_t l1i_id = apic_id & ~bit_mask(processor->cache.l1i.apic_bits); if (l1i_id != last_l1i_id) { last_l1i_id = l1i_id; l1i_count++; } } if (processor->cache.l1d.size != 0) { const uint32_t l1d_id = apic_id & ~bit_mask(processor->cache.l1d.apic_bits); if (l1d_id != last_l1d_id) { last_l1d_id = l1d_id; l1d_count++; } } if (processor->cache.l2.size != 0) { const uint32_t l2_id = apic_id & ~bit_mask(processor->cache.l2.apic_bits); if (l2_id != last_l2_id) { last_l2_id = l2_id; l2_count++; } } if (processor->cache.l3.size != 0) { const uint32_t l3_id = apic_id & ~bit_mask(processor->cache.l3.apic_bits); if (l3_id != last_l3_id) { last_l3_id = l3_id; l3_count++; } } if (processor->cache.l4.size != 0) { const uint32_t l4_id = apic_id & ~bit_mask(processor->cache.l4.apic_bits); if (l4_id != last_l4_id) { last_l4_id = l4_id; l4_count++; } } } } *cores_count_ptr = cores_count; *clusters_count_ptr = clusters_count; *packages_count_ptr = packages_count; *l1i_count_ptr = l1i_count; *l1d_count_ptr = l1d_count; *l2_count_ptr = l2_count; *l3_count_ptr = l3_count; *l4_count_ptr = l4_count; } void cpuinfo_x86_linux_init(void) { struct cpuinfo_x86_linux_processor* x86_linux_processors = NULL; struct cpuinfo_processor* processors = NULL; struct cpuinfo_core* cores = NULL; struct cpuinfo_cluster* clusters = NULL; struct cpuinfo_package* packages = NULL; const struct cpuinfo_processor** linux_cpu_to_processor_map = NULL; const struct cpuinfo_core** linux_cpu_to_core_map = NULL; struct cpuinfo_cache* l1i = NULL; struct cpuinfo_cache* l1d = NULL; struct cpuinfo_cache* l2 = NULL; struct cpuinfo_cache* l3 = NULL; struct cpuinfo_cache* l4 = NULL; const uint32_t max_processors_count = cpuinfo_linux_get_max_processors_count(); cpuinfo_log_debug("system maximum processors count: %"PRIu32, max_processors_count); const uint32_t max_possible_processors_count = 1 + cpuinfo_linux_get_max_possible_processor(max_processors_count); cpuinfo_log_debug("maximum possible processors count: %"PRIu32, max_possible_processors_count); const uint32_t max_present_processors_count = 1 + cpuinfo_linux_get_max_present_processor(max_processors_count); cpuinfo_log_debug("maximum present processors count: %"PRIu32, max_present_processors_count); uint32_t valid_processor_mask = 0; uint32_t x86_linux_processors_count = max_processors_count; if (max_present_processors_count != 0) { x86_linux_processors_count = min(x86_linux_processors_count, max_present_processors_count); valid_processor_mask = CPUINFO_LINUX_FLAG_PRESENT; } else { valid_processor_mask = CPUINFO_LINUX_FLAG_PROC_CPUINFO; } if (max_possible_processors_count != 0) { x86_linux_processors_count = min(x86_linux_processors_count, max_possible_processors_count); valid_processor_mask |= CPUINFO_LINUX_FLAG_POSSIBLE; } x86_linux_processors = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor)); if (x86_linux_processors == NULL) { cpuinfo_log_error( "failed to allocate %zu bytes for descriptions of %"PRIu32" x86 logical processors", x86_linux_processors_count * sizeof(struct cpuinfo_x86_linux_processor), x86_linux_processors_count); return; } if (max_possible_processors_count != 0) { cpuinfo_linux_detect_possible_processors( x86_linux_processors_count, &x86_linux_processors->flags, sizeof(struct cpuinfo_x86_linux_processor), CPUINFO_LINUX_FLAG_POSSIBLE); } if (max_present_processors_count != 0) { cpuinfo_linux_detect_present_processors( x86_linux_processors_count, &x86_linux_processors->flags, sizeof(struct cpuinfo_x86_linux_processor), CPUINFO_LINUX_FLAG_PRESENT); } if (!cpuinfo_x86_linux_parse_proc_cpuinfo(x86_linux_processors_count, x86_linux_processors)) { cpuinfo_log_error("failed to parse processor information from /proc/cpuinfo"); return; } for (uint32_t i = 0; i < x86_linux_processors_count; i++) { if (bitmask_all(x86_linux_processors[i].flags, valid_processor_mask)) { x86_linux_processors[i].flags |= CPUINFO_LINUX_FLAG_VALID; } } struct cpuinfo_x86_processor x86_processor; memset(&x86_processor, 0, sizeof(x86_processor)); cpuinfo_x86_init_processor(&x86_processor); char brand_string[48]; cpuinfo_x86_normalize_brand_string(x86_processor.brand_string, brand_string); uint32_t processors_count = 0; for (uint32_t i = 0; i < x86_linux_processors_count; i++) { if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) { x86_linux_processors[i].linux_id = i; processors_count++; } } qsort(x86_linux_processors, x86_linux_processors_count, sizeof(struct cpuinfo_x86_linux_processor), cmp_x86_linux_processor); processors = calloc(processors_count, sizeof(struct cpuinfo_processor)); if (processors == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" logical processors", processors_count * sizeof(struct cpuinfo_processor), processors_count); goto cleanup; } uint32_t llc_apic_bits = 0; if (x86_processor.cache.l4.size != 0) { llc_apic_bits = x86_processor.cache.l4.apic_bits; } else if (x86_processor.cache.l3.size != 0) { llc_apic_bits = x86_processor.cache.l3.apic_bits; } else if (x86_processor.cache.l2.size != 0) { llc_apic_bits = x86_processor.cache.l2.apic_bits; } else if (x86_processor.cache.l1d.size != 0) { llc_apic_bits = x86_processor.cache.l1d.apic_bits; } uint32_t packages_count = 0, clusters_count = 0, cores_count = 0; uint32_t l1i_count = 0, l1d_count = 0, l2_count = 0, l3_count = 0, l4_count = 0; cpuinfo_x86_count_objects( x86_linux_processors_count, x86_linux_processors, &x86_processor, valid_processor_mask, llc_apic_bits, &cores_count, &clusters_count, &packages_count, &l1i_count, &l1d_count, &l2_count, &l3_count, &l4_count); cpuinfo_log_debug("detected %"PRIu32" cores", cores_count); cpuinfo_log_debug("detected %"PRIu32" clusters", clusters_count); cpuinfo_log_debug("detected %"PRIu32" packages", packages_count); cpuinfo_log_debug("detected %"PRIu32" L1I caches", l1i_count); cpuinfo_log_debug("detected %"PRIu32" L1D caches", l1d_count); cpuinfo_log_debug("detected %"PRIu32" L2 caches", l2_count); cpuinfo_log_debug("detected %"PRIu32" L3 caches", l3_count); cpuinfo_log_debug("detected %"PRIu32" L4 caches", l4_count); linux_cpu_to_processor_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_processor*)); if (linux_cpu_to_processor_map == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for mapping entries of %"PRIu32" logical processors", x86_linux_processors_count * sizeof(struct cpuinfo_processor*), x86_linux_processors_count); goto cleanup; } linux_cpu_to_core_map = calloc(x86_linux_processors_count, sizeof(struct cpuinfo_core*)); if (linux_cpu_to_core_map == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for mapping entries of %"PRIu32" cores", x86_linux_processors_count * sizeof(struct cpuinfo_core*), x86_linux_processors_count); goto cleanup; } cores = calloc(cores_count, sizeof(struct cpuinfo_core)); if (cores == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" cores", cores_count * sizeof(struct cpuinfo_core), cores_count); goto cleanup; } clusters = calloc(clusters_count, sizeof(struct cpuinfo_cluster)); if (clusters == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" core clusters", clusters_count * sizeof(struct cpuinfo_cluster), clusters_count); goto cleanup; } packages = calloc(packages_count, sizeof(struct cpuinfo_package)); if (packages == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" physical packages", packages_count * sizeof(struct cpuinfo_package), packages_count); goto cleanup; } if (l1i_count != 0) { l1i = calloc(l1i_count, sizeof(struct cpuinfo_cache)); if (l1i == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1I caches", l1i_count * sizeof(struct cpuinfo_cache), l1i_count); goto cleanup; } } if (l1d_count != 0) { l1d = calloc(l1d_count, sizeof(struct cpuinfo_cache)); if (l1d == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L1D caches", l1d_count * sizeof(struct cpuinfo_cache), l1d_count); goto cleanup; } } if (l2_count != 0) { l2 = calloc(l2_count, sizeof(struct cpuinfo_cache)); if (l2 == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L2 caches", l2_count * sizeof(struct cpuinfo_cache), l2_count); goto cleanup; } } if (l3_count != 0) { l3 = calloc(l3_count, sizeof(struct cpuinfo_cache)); if (l3 == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L3 caches", l3_count * sizeof(struct cpuinfo_cache), l3_count); goto cleanup; } } if (l4_count != 0) { l4 = calloc(l4_count, sizeof(struct cpuinfo_cache)); if (l4 == NULL) { cpuinfo_log_error("failed to allocate %zu bytes for descriptions of %"PRIu32" L4 caches", l4_count * sizeof(struct cpuinfo_cache), l4_count); goto cleanup; } } const uint32_t core_apic_mask = ~(bit_mask(x86_processor.topology.thread_bits_length) << x86_processor.topology.thread_bits_offset); const uint32_t package_apic_mask = core_apic_mask & ~(bit_mask(x86_processor.topology.core_bits_length) << x86_processor.topology.core_bits_offset); const uint32_t llc_apic_mask = ~bit_mask(llc_apic_bits); const uint32_t cluster_apic_mask = package_apic_mask | llc_apic_mask; uint32_t processor_index = UINT32_MAX, core_index = UINT32_MAX, cluster_index = UINT32_MAX, package_index = UINT32_MAX; uint32_t l1i_index = UINT32_MAX, l1d_index = UINT32_MAX, l2_index = UINT32_MAX, l3_index = UINT32_MAX, l4_index = UINT32_MAX; uint32_t cluster_id = 0, core_id = 0, smt_id = 0; uint32_t last_apic_core_id = UINT32_MAX, last_apic_cluster_id = UINT32_MAX, last_apic_package_id = UINT32_MAX; uint32_t last_l1i_id = UINT32_MAX, last_l1d_id = UINT32_MAX; uint32_t last_l2_id = UINT32_MAX, last_l3_id = UINT32_MAX, last_l4_id = UINT32_MAX; for (uint32_t i = 0; i < x86_linux_processors_count; i++) { if (bitmask_all(x86_linux_processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) { const uint32_t apic_id = x86_linux_processors[i].apic_id; processor_index++; smt_id++; /* All bits of APIC ID except thread ID mask */ const uint32_t apid_core_id = apic_id & core_apic_mask; if (apid_core_id != last_apic_core_id) { core_index++; core_id++; smt_id = 0; } /* Bits of APIC ID which are part of either LLC or package ID mask */ const uint32_t apic_cluster_id = apic_id & cluster_apic_mask; if (apic_cluster_id != last_apic_cluster_id) { cluster_index++; cluster_id++; } /* All bits of APIC ID except thread ID and core ID masks */ const uint32_t apic_package_id = apic_id & package_apic_mask; if (apic_package_id != last_apic_package_id) { package_index++; core_id = 0; cluster_id = 0; } /* Initialize logical processor object */ processors[processor_index].smt_id = smt_id; processors[processor_index].core = cores + core_index; processors[processor_index].cluster = clusters + cluster_index; processors[processor_index].package = packages + package_index; processors[processor_index].linux_id = x86_linux_processors[i].linux_id; processors[processor_index].apic_id = x86_linux_processors[i].apic_id; if (apid_core_id != last_apic_core_id) { /* new core */ cores[core_index] = (struct cpuinfo_core) { .processor_start = processor_index, .processor_count = 1, .core_id = core_id, .cluster = clusters + cluster_index, .package = packages + package_index, .vendor = x86_processor.vendor, .uarch = x86_processor.uarch, .cpuid = x86_processor.cpuid, }; clusters[cluster_index].core_count += 1; packages[package_index].core_count += 1; last_apic_core_id = apid_core_id; } else { /* another logical processor on the same core */ cores[core_index].processor_count++; } if (apic_cluster_id != last_apic_cluster_id) { /* new cluster */ clusters[cluster_index].processor_start = processor_index; clusters[cluster_index].processor_count = 1; clusters[cluster_index].core_start = core_index; clusters[cluster_index].cluster_id = cluster_id; clusters[cluster_index].package = packages + package_index; clusters[cluster_index].vendor = x86_processor.vendor; clusters[cluster_index].uarch = x86_processor.uarch; clusters[cluster_index].cpuid = x86_processor.cpuid; packages[package_index].cluster_count += 1; last_apic_cluster_id = apic_cluster_id; } else { /* another logical processor on the same cluster */ clusters[cluster_index].processor_count++; } if (apic_package_id != last_apic_package_id) { /* new package */ packages[package_index].processor_start = processor_index; packages[package_index].processor_count = 1; packages[package_index].core_start = core_index; packages[package_index].cluster_start = cluster_index; cpuinfo_x86_format_package_name(x86_processor.vendor, brand_string, packages[package_index].name); last_apic_package_id = apic_package_id; } else { /* another logical processor on the same package */ packages[package_index].processor_count++; } linux_cpu_to_processor_map[x86_linux_processors[i].linux_id] = processors + processor_index; linux_cpu_to_core_map[x86_linux_processors[i].linux_id] = cores + core_index; if (x86_processor.cache.l1i.size != 0) { const uint32_t l1i_id = apic_id & ~bit_mask(x86_processor.cache.l1i.apic_bits); processors[i].cache.l1i = &l1i[l1i_index]; if (l1i_id != last_l1i_id) { /* new cache */ last_l1i_id = l1i_id; l1i[++l1i_index] = (struct cpuinfo_cache) { .size = x86_processor.cache.l1i.size, .associativity = x86_processor.cache.l1i.associativity, .sets = x86_processor.cache.l1i.sets, .partitions = x86_processor.cache.l1i.partitions, .line_size = x86_processor.cache.l1i.line_size, .flags = x86_processor.cache.l1i.flags, .processor_start = processor_index, .processor_count = 1, }; } else { /* another processor sharing the same cache */ l1i[l1i_index].processor_count += 1; } processors[i].cache.l1i = &l1i[l1i_index]; } else { /* reset cache id */ last_l1i_id = UINT32_MAX; } if (x86_processor.cache.l1d.size != 0) { const uint32_t l1d_id = apic_id & ~bit_mask(x86_processor.cache.l1d.apic_bits); processors[i].cache.l1d = &l1d[l1d_index]; if (l1d_id != last_l1d_id) { /* new cache */ last_l1d_id = l1d_id; l1d[++l1d_index] = (struct cpuinfo_cache) { .size = x86_processor.cache.l1d.size, .associativity = x86_processor.cache.l1d.associativity, .sets = x86_processor.cache.l1d.sets, .partitions = x86_processor.cache.l1d.partitions, .line_size = x86_processor.cache.l1d.line_size, .flags = x86_processor.cache.l1d.flags, .processor_start = processor_index, .processor_count = 1, }; } else { /* another processor sharing the same cache */ l1d[l1d_index].processor_count += 1; } processors[i].cache.l1d = &l1d[l1d_index]; } else { /* reset cache id */ last_l1d_id = UINT32_MAX; } if (x86_processor.cache.l2.size != 0) { const uint32_t l2_id = apic_id & ~bit_mask(x86_processor.cache.l2.apic_bits); processors[i].cache.l2 = &l2[l2_index]; if (l2_id != last_l2_id) { /* new cache */ last_l2_id = l2_id; l2[++l2_index] = (struct cpuinfo_cache) { .size = x86_processor.cache.l2.size, .associativity = x86_processor.cache.l2.associativity, .sets = x86_processor.cache.l2.sets, .partitions = x86_processor.cache.l2.partitions, .line_size = x86_processor.cache.l2.line_size, .flags = x86_processor.cache.l2.flags, .processor_start = processor_index, .processor_count = 1, }; } else { /* another processor sharing the same cache */ l2[l2_index].processor_count += 1; } processors[i].cache.l2 = &l2[l2_index]; } else { /* reset cache id */ last_l2_id = UINT32_MAX; } if (x86_processor.cache.l3.size != 0) { const uint32_t l3_id = apic_id & ~bit_mask(x86_processor.cache.l3.apic_bits); processors[i].cache.l3 = &l3[l3_index]; if (l3_id != last_l3_id) { /* new cache */ last_l3_id = l3_id; l3[++l3_index] = (struct cpuinfo_cache) { .size = x86_processor.cache.l3.size, .associativity = x86_processor.cache.l3.associativity, .sets = x86_processor.cache.l3.sets, .partitions = x86_processor.cache.l3.partitions, .line_size = x86_processor.cache.l3.line_size, .flags = x86_processor.cache.l3.flags, .processor_start = processor_index, .processor_count = 1, }; } else { /* another processor sharing the same cache */ l3[l3_index].processor_count += 1; } processors[i].cache.l3 = &l3[l3_index]; } else { /* reset cache id */ last_l3_id = UINT32_MAX; } if (x86_processor.cache.l4.size != 0) { const uint32_t l4_id = apic_id & ~bit_mask(x86_processor.cache.l4.apic_bits); processors[i].cache.l4 = &l4[l4_index]; if (l4_id != last_l4_id) { /* new cache */ last_l4_id = l4_id; l4[++l4_index] = (struct cpuinfo_cache) { .size = x86_processor.cache.l4.size, .associativity = x86_processor.cache.l4.associativity, .sets = x86_processor.cache.l4.sets, .partitions = x86_processor.cache.l4.partitions, .line_size = x86_processor.cache.l4.line_size, .flags = x86_processor.cache.l4.flags, .processor_start = processor_index, .processor_count = 1, }; } else { /* another processor sharing the same cache */ l4[l4_index].processor_count += 1; } processors[i].cache.l4 = &l4[l4_index]; } else { /* reset cache id */ last_l4_id = UINT32_MAX; } } } /* Commit changes */ cpuinfo_processors = processors; cpuinfo_cores = cores; cpuinfo_clusters = clusters; cpuinfo_packages = packages; cpuinfo_cache[cpuinfo_cache_level_1i] = l1i; cpuinfo_cache[cpuinfo_cache_level_1d] = l1d; cpuinfo_cache[cpuinfo_cache_level_2] = l2; cpuinfo_cache[cpuinfo_cache_level_3] = l3; cpuinfo_cache[cpuinfo_cache_level_4] = l4; cpuinfo_processors_count = processors_count; cpuinfo_cores_count = cores_count; cpuinfo_clusters_count = clusters_count; cpuinfo_packages_count = packages_count; cpuinfo_cache_count[cpuinfo_cache_level_1i] = l1i_count; cpuinfo_cache_count[cpuinfo_cache_level_1d] = l1d_count; cpuinfo_cache_count[cpuinfo_cache_level_2] = l2_count; cpuinfo_cache_count[cpuinfo_cache_level_3] = l3_count; cpuinfo_cache_count[cpuinfo_cache_level_4] = l4_count; cpuinfo_max_cache_size = cpuinfo_compute_max_cache_size(&processors[0]); cpuinfo_global_uarch = (struct cpuinfo_uarch_info) { .uarch = x86_processor.uarch, .cpuid = x86_processor.cpuid, .processor_count = processors_count, .core_count = cores_count, }; cpuinfo_linux_cpu_max = x86_linux_processors_count; cpuinfo_linux_cpu_to_processor_map = linux_cpu_to_processor_map; cpuinfo_linux_cpu_to_core_map = linux_cpu_to_core_map; __sync_synchronize(); cpuinfo_is_initialized = true; processors = NULL; cores = NULL; clusters = NULL; packages = NULL; l1i = l1d = l2 = l3 = l4 = NULL; linux_cpu_to_processor_map = NULL; linux_cpu_to_core_map = NULL; cleanup: free(x86_linux_processors); free(processors); free(cores); free(clusters); free(packages); free(l1i); free(l1d); free(l2); free(l3); free(l4); free(linux_cpu_to_processor_map); free(linux_cpu_to_core_map); }