// Copyright 2019 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert DATATYPE in ["F32", "QC4", "QC8"] $if DATATYPE == "QC8" and SSE == 2: $assert NR % 8 == 0 $elif DATATYPE == "QC4": $assert NR == 8 $else: $assert NR % 4 == 0 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" $SSE_HEADER = "immintrin.h" if AVX else {1: "immintrin.h", 2: "emmintrin.h", 4: "smmintrin.h"}[SSE] #include #include <${SSE_HEADER}> #include $if DATATYPE == "QC8" and SSE == 4: #include $ISA = {0: "avx", 3: "fma3"}[FMA] if AVX else {1: "sse", 2: "sse2", 4: "sse41"}[SSE] $DATATYPE_SPEC = {"F32": "f32", "QC8": "f32_qc8w", "QC4": "f32_qc4w"}[DATATYPE] void xnn_${DATATYPE_SPEC}_gemm${"inc" if INC else ""}_minmax_ukernel_${MR}x${NR}__${ISA}_dup( size_t mr, size_t nc, size_t kc, const float* restrict a, size_t a_stride, $if DATATYPE == "F32": const float* restrict w, $else: const void* restrict w, float* restrict c, size_t cm_stride, size_t cn_stride, $if INC: const float* restrict acc, $if DATATYPE == "QC4": const union xnn_f32_qc4w_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) $else: const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) { assert(mr != 0); assert(mr <= ${MR}); assert(nc != 0); assert(kc != 0); assert(kc % sizeof(float) == 0); assert(a != NULL); assert(w != NULL); assert(c != NULL); $if INC: assert(acc != NULL); const float* a0 = a; float* c0 = c; $for M in range(1, MR): const float* a${M} = (const float*) ((uintptr_t) a${M-1} + a_stride); float* c${M} = (float*) ((uintptr_t) c${M-1} + cm_stride); $if M % 2 == 0: if XNN_UNPREDICTABLE(mr <= ${M}) { a${M} = a${M-1}; c${M} = c${M-1}; } $elif M + 1 == MR: if XNN_UNPREDICTABLE(mr != ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } $else: if XNN_UNPREDICTABLE(mr < ${M+1}) { a${M} = a${M-1}; c${M} = c${M-1}; } $if DATATYPE == "QC4": const __m128i vminus_kernel_zero_point = _mm_load_si128((const __m128i *) params->sse.minus_kernel_zero_point); const __m128i vmask = _mm_load_si128((const __m128i *) params->sse.mask); do { $if INC: $for M in range(MR): $for N in range(0, NR, 4): __m128 vacc${M}x${ABC[N:N+4]} = _mm_load_ps(acc + ${M*NR+N}); acc += ${MR*NR}; $else: $for N in range(0, NR, 4): $if DATATYPE == "F32": __m128 vacc0x${ABC[N:N+4]} = _mm_load_ps(w + ${N}); $else: __m128 vacc0x${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N}); $for M in range(1, MR): $for N in range(0, NR, 4): __m128 vacc${M}x${ABC[N:N+4]} = vacc0x${ABC[N:N+4]}; $if DATATYPE == "F32": w += ${NR}; $else: w = (const float*) w + ${NR}; size_t k = kc; for (; k >= 4 * sizeof(float); k -= 4 * sizeof(float)) { $for M in range(MR): const __m128 va${M} = _mm_loadu_ps(a${M}); a${M} += 4; $for L in range(4): $LLLL = str(L) * 4 $for M in range(MR): $if SSE >= 2 and L < 3: const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}))); $elif AVX >= 1: const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); $else: const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); $if DATATYPE == "F32": $for N in range(0, NR, 4): const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N}); $elif DATATYPE == "QC4": $if L % 4 == 0: $if SSE >= 4: $for N in range(0, NR, 8): const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}))); const __m128i vbwi${ABC[N:N+8]}c23 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2 + 8}))); $for N in range(0, NR, 8): __m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); __m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4); __m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask); __m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 4); $else: $for N in range(0, NR, 8): __m128i vbi${ABC[N:N+8]}c0123 = _mm_loadu_si128((const __m128i *) ((const int8_t*) w + ${N * 2})); $for N in range(0, NR, 8): __m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123); __m128i vbwi${ABC[N:N+8]}c23 = _mm_unpackhi_epi8(vbi${ABC[N:N+8]}c0123, vbi${ABC[N:N+8]}c0123); __m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); __m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12); __m128i vbw${ABC[N:N+8]}c2 = _mm_and_si128(vbwi${ABC[N:N+8]}c23, vmask); __m128i vbw${ABC[N:N+8]}c3 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c23, 12); $for N in range(0, NR, 8): $if SSE >= 4: __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L}); $else: __m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); __m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point); vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point); const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L}); $elif DATATYPE == "QC8": $if SSE >= 4: $for N in range(0, NR, 4): const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N}))); $for N in range(0, NR, 4): const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); $else: $for N in range(0, NR, 8): const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N})); $for N in range(0, NR, 8): const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L}); const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); $for N in range(0, NR, 4): $for M in range(MR): $if FMA == 3: vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]}); $else: vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L})); $if DATATYPE == "F32": w += ${NR * 4}; $elif DATATYPE == "QC4": w = (const int8_t*) w + ${NR * 4 // 2}; $else: w = (const int8_t*) w + ${NR * 4}; } if XNN_UNLIKELY(k >= 2 * sizeof(float)) { $for M in range(MR): $if SSE >= 2: const __m128 va${M} = _mm_castsi128_ps(_mm_loadl_epi64((const __m128i *) a${M})); $else: const __m128 va${M} = _mm_loadl_pi(_mm_undefined_ps(), (const __m64*) a${M}); a${M} += 2; $for L in range(2): $LLLL = str(L) * 4 $for M in range(MR): $if SSE >= 2 and L < 3: const __m128 va${M}c${LLLL} = _mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(va${M}), _MM_SHUFFLE(${L}, ${L}, ${L}, ${L}))); $elif AVX >= 1: const __m128 va${M}c${LLLL} = _mm_permute_ps(va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); $else: const __m128 va${M}c${LLLL} = _mm_shuffle_ps(va${M}, va${M}, _MM_SHUFFLE(${L}, ${L}, ${L}, ${L})); $if DATATYPE == "F32": $for N in range(0, NR, 4): const __m128 vb${ABC[N:N+4]}c${L} = _mm_load_ps(w + ${L * NR + N}); $elif DATATYPE == "QC4": $if L % 2 == 0: $if SSE >= 4: $for N in range(0, NR, 8): const __m128i vbwi${ABC[N:N+8]}c01 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}))); $for N in range(0, NR, 8): __m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); __m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 4); $else: $for N in range(0, NR, 8): __m128i vbi${ABC[N:N+8]}c01 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})); $for N in range(0, NR, 8): __m128i vbwi${ABC[N:N+8]}c01 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c01, vbi${ABC[N:N+8]}c01); __m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c01, vmask); __m128i vbw${ABC[N:N+8]}c1 = _mm_srli_epi16(vbwi${ABC[N:N+8]}c01, 12); $for N in range(0, NR, 8): $if SSE >= 4: __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c${L}); $else: __m128i vbi${ABC[N:N+4]}c${L} = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); __m128i vbi${ABC[N+4:N+8]}c${L} = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, _mm_setzero_si128()); vbi${ABC[N:N+4]}c${L} = _mm_add_epi32(vbi${ABC[N:N+4]}c${L}, vminus_kernel_zero_point); vbi${ABC[N+4:N+8]}c${L} = _mm_add_epi32(vbi${ABC[N+4:N+8]}c${L}, vminus_kernel_zero_point); const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c${L}); $elif DATATYPE == "QC8": $if SSE >= 4: $for N in range(0, NR, 4): const __m128i vbi${ABC[N:N+4]}c${L} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${L * NR + N}))); $for N in range(0, NR, 4): const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c${L}); $else: $for N in range(0, NR, 8): const __m128i vb${ABC[N:N+8]}c${L} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${L * NR + N})); $for N in range(0, NR, 8): const __m128i vbw${ABC[N:N+8]}c${L} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}c${L}, vb${ABC[N:N+8]}c${L}); const __m128 vb${ABC[N:N+4]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); const __m128 vb${ABC[N+4:N+8]}c${L} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}c${L}, vbw${ABC[N:N+8]}c${L}), 24)); $for N in range(0, NR, 4): $for M in range(MR): $if FMA == 3: vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L}, vacc${M}x${ABC[N:N+4]}); $else: vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}c${LLLL}, vb${ABC[N:N+4]}c${L})); $if DATATYPE == "F32": w += ${NR * 2}; $elif DATATYPE == "QC4": w = (const int8_t*) w + ${NR * 2 // 2}; $else: w = (const int8_t*) w + ${NR * 2}; k -= 2 * sizeof(float); } if XNN_UNLIKELY(k != 0) { $for M in range(MR): const __m128 va${M} = _mm_load1_ps(a${M}); a${M} += 1; $if DATATYPE == "F32": const __m128 vb${ABC[0:4]} = _mm_load_ps(w); $for N in range(4, NR, 4): const __m128 vb${ABC[N:N+4]} = _mm_load_ps(w + ${N}); w += ${NR}; $elif DATATYPE == "QC4": $if SSE >= 4: $for N in range(0, NR, 8): const __m128i vbwi${ABC[N:N+8]}c0 = _mm_cvtepu8_epi16(_mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2}))); $for N in range(0, NR, 8): __m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask); $else: $for N in range(0, NR, 8): __m128i vbi${ABC[N:N+8]}c0 = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N * 2})); $for N in range(0, NR, 8): __m128i vbwi${ABC[N:N+8]}c0 = _mm_unpacklo_epi8(vbi${ABC[N:N+8]}c0, vbi${ABC[N:N+8]}c0); __m128i vbw${ABC[N:N+8]}c0 = _mm_and_si128(vbwi${ABC[N:N+8]}c0, vmask); $for N in range(0, NR, 8): $if SSE >= 4: __m128i vbi${ABC[N:N+4]}c0 = _mm_cvtepu16_epi32(vbw${ABC[N:N+8]}c0); $else: __m128i vbi${ABC[N:N+4]}c0 = _mm_unpacklo_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128()); __m128i vbi${ABC[N+4:N+8]}c0 = _mm_unpackhi_epi16(vbw${ABC[N:N+8]}c0, _mm_setzero_si128()); vbi${ABC[N:N+4]}c0 = _mm_add_epi32(vbi${ABC[N:N+4]}c0, vminus_kernel_zero_point); vbi${ABC[N+4:N+8]}c0 = _mm_add_epi32(vbi${ABC[N+4:N+8]}c0, vminus_kernel_zero_point); const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}c0); const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(vbi${ABC[N+4:N+8]}c0); w = (const int8_t*) w + ${NR}; $elif DATATYPE == "QC8": $if SSE >= 4: const __m128i vbi${ABC[0:4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const void*) w))); $for N in range(4, NR, 4): const __m128i vbi${ABC[N:N+4]} = _mm_cvtepi8_epi32(_mm_cvtsi32_si128((int) unaligned_load_s32((const int8_t*) w + ${N}))); $for N in range(0, NR, 4): const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(vbi${ABC[N:N+4]}); $else: $for N in range(0, NR, 8): const __m128i vb${ABC[N:N+8]} = _mm_loadl_epi64((const __m128i *) ((const int8_t*) w + ${N})); $for N in range(0, NR, 8): const __m128i vbw${ABC[N:N+8]} = _mm_unpacklo_epi8(vb${ABC[N:N+8]}, vb${ABC[N:N+8]}); const __m128 vb${ABC[N:N+4]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpacklo_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24)); const __m128 vb${ABC[N+4:N+8]} = _mm_cvtepi32_ps(_mm_srai_epi32(_mm_unpackhi_epi16(vbw${ABC[N:N+8]}, vbw${ABC[N:N+8]}), 24)); w = (const int8_t*) w + ${NR}; $for N in range(0, NR, 4): $for M in range(MR): $if FMA == 3: vacc${M}x${ABC[N:N+4]} = _mm_fmadd_ps(va${M}, vb${ABC[N:N+4]}, vacc${M}x${ABC[N:N+4]}); $else: vacc${M}x${ABC[N:N+4]} = _mm_add_ps(vacc${M}x${ABC[N:N+4]}, _mm_mul_ps(va${M}, vb${ABC[N:N+4]})); k -= sizeof(float); } $if DATATYPE in ["QC8", "QC4"]: $for N in range(0, NR, 4): const __m128 vscale${ABC[N:N+4]} = _mm_loadu_ps((const float*) w + ${N}); $for M in range(MR): vacc${M}x${ABC[N:N+4]} = _mm_mul_ps(vacc${M}x${ABC[N:N+4]}, vscale${ABC[N:N+4]}); w = (const float*) w + ${NR}; const __m128 vmax = _mm_load_ps(params->sse.max); $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = _mm_min_ps(vacc${M}x${ABC[N:N+4]}, vmax); const __m128 vmin = _mm_load_ps(params->sse.min); $for N in range(0, NR, 4): $for M in range(MR): vacc${M}x${ABC[N:N+4]} = _mm_max_ps(vacc${M}x${ABC[N:N+4]}, vmin); if XNN_LIKELY(nc >= ${NR}) { $for M in reversed(range(MR)): _mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]}); $for N in range(4, NR, 4): _mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]}); c${M} = (float*) ((uintptr_t) c${M} + cn_stride); $for M in reversed(range(MR)): a${M} = (const float*) ((uintptr_t) a${M} - kc); nc -= ${NR}; } else { $for LOG2N in reversed(range(NR.bit_length())): $if NR != 1 << LOG2N: if (nc & ${1 << LOG2N}) { $if LOG2N >= 2: $for M in reversed(range(MR)): _mm_storeu_ps(c${M}, vacc${M}x${ABC[0:4]}); $for N in range(4, 1 << LOG2N, 4): _mm_storeu_ps(c${M} + ${N}, vacc${M}x${ABC[N:N+4]}); $for M in reversed(range(MR)): $for N in range(0, NR - (1 << LOG2N), 4): vacc${M}x${ABC[N:N+4]} = vacc${M}x${ABC[N + (1 << LOG2N):N + (1 << LOG2N)+4]}; $for M in reversed(range(MR)): c${M} += ${1 << LOG2N}; $elif LOG2N == 1: $for M in reversed(range(MR)): _mm_storel_pi((__m64*) c${M}, vacc${M}x${ABC[0:4]}); $for M in reversed(range(MR)): vacc${M}x${ABC[0:4]} = _mm_movehl_ps(vacc${M}x${ABC[0:4]}, vacc${M}x${ABC[0:4]}); $for M in reversed(range(MR)): c${M} += 2; $elif LOG2N == 0: $for M in reversed(range(MR)): _mm_store_ss(c${M}, vacc${M}x${ABC[0:4]}); } nc = 0; } } while (nc != 0); }