// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $CHANNEL_SUBTILE = 4 $assert CHANNEL_TILE % CHANNEL_SUBTILE == 0 $CHANNEL_ROUND = 4 $assert MIDDLE_PASS_TILE <= LAST_PASS_TILE $assert FIRST_PASS_TILE >= 1 $assert MIDDLE_PASS_TILE >= 1 $assert LAST_PASS_TILE >= 1 $assert ACCUMULATORS >= 1 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include #include #include void xnn_f32_dwconv_minmax_ukernel_${FIRST_PASS_TILE}f${MIDDLE_PASS_TILE}m${LAST_PASS_TILE}l${CHANNEL_TILE}c${CHANNEL_SUBTILE}s${CHANNEL_ROUND}r__sse${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}( size_t channels, size_t output_width, const float** input, const float* weights, float* output, intptr_t input_stride, size_t output_increment, size_t input_offset, const float* zero, size_t kernel_size, float* buffer, const union xnn_f32_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) XNN_OOB_READS { assert(channels != 0); assert(output_width != 0); assert(kernel_size > ${FIRST_PASS_TILE}); const __m128 vmax = _mm_load_ps(params->sse.max); const __m128 vmin = _mm_load_ps(params->sse.min); do { const float* w = weights; // First pass to process ${FIRST_PASS_TILE} inputs. { float* b = buffer; $for K in range(FIRST_PASS_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } input += ${FIRST_PASS_TILE}; // Process c channels and write to buffer. $if CHANNEL_TILE == 4: size_t c = 0; for (; c < channels; c += 4) { __m128 vacc0123p0 = _mm_load_ps(w); $for K in range(FIRST_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += ${CHANNEL_TILE}; const __m128 vk${K}x0123 = _mm_load_ps(w + ${(K + 1) * CHANNEL_TILE}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 _mm_store_ps(b, vacc0123p0); b += ${CHANNEL_TILE}; } $else: size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 4): $if C == 0: __m128 vacc${ABC[C:C+4]}p0 = _mm_load_ps(w); $else: __m128 vacc${ABC[C:C+4]}p0 = _mm_load_ps(w + ${C}); $for K in range(FIRST_PASS_TILE): $for C in range(0, CHANNEL_TILE, 4): $if C == 0: const __m128 vi${K}x${ABC[C:C+4]} = _mm_loadu_ps(i${K}); $else: const __m128 vi${K}x${ABC[C:C+4]} = _mm_loadu_ps(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): const __m128 vk${K}x${ABC[C:C+4]} = _mm_load_ps(w + ${(K + 1) * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: __m128 vacc${ABC[C:C+4]}p${K} = _mm_mul_ps(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = _mm_add_ps(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]})); w += ${(FIRST_PASS_TILE + 1) * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = _mm_add_ps(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 4): $if C == 0: _mm_store_ps(b, vacc${ABC[C:C+4]}p0); $else: _mm_store_ps(b + ${C}, vacc${ABC[C:C+4]}p0); b += ${CHANNEL_TILE}; } $if CHANNEL_TILE == 8: if (c != 0) { __m128 vacc0123p0 = _mm_load_ps(w); $for K in range(FIRST_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += 4; const __m128 vk${K}x0123 = _mm_load_ps(w + ${(K + 1) * 4}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); w += ${(FIRST_PASS_TILE + 1) * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 _mm_store_ps(b, vacc0123p0); b += 4; } $else: for (; c != 0; c -= 4) { __m128 vacc0123p0 = _mm_load_ps(w); $for K in range(FIRST_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += 4; const __m128 vk${K}x0123 = _mm_load_ps(w + ${(K + 1) * 4}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); w += ${(FIRST_PASS_TILE + 1) * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 _mm_store_ps(b, vacc0123p0); b += 4; } } // Middle pass to process ${MIDDLE_PASS_TILE} inputs in each iteration. for (size_t ks = kernel_size - ${FIRST_PASS_TILE}; ks > ${LAST_PASS_TILE}; ks -= ${MIDDLE_PASS_TILE}) { float* b = buffer; $for K in range(MIDDLE_PASS_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } input += ${MIDDLE_PASS_TILE}; $if CHANNEL_TILE == 4: size_t c = 0; for (; c < channels; c += 4) { __m128 vacc0123p0 = _mm_load_ps(b); $for K in range(MIDDLE_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += ${CHANNEL_TILE}; $if K == 0: const __m128 vk${K}x0123 = _mm_load_ps(w); $else: const __m128 vk${K}x0123 = _mm_load_ps(w + ${K * CHANNEL_TILE}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); w += ${MIDDLE_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 _mm_store_ps(b, vacc0123p0); b += ${CHANNEL_TILE}; } $else: size_t c = round_up_po2(channels, ${CHANNEL_ROUND}); for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 4): $if C == 0: __m128 vacc${ABC[C:C+4]}p0 = _mm_load_ps(b); $else: __m128 vacc${ABC[C:C+4]}p0 = _mm_load_ps(b + ${C}); $for K in range(MIDDLE_PASS_TILE): $for C in range(0, CHANNEL_TILE, 4): $if C == 0: const __m128 vi${K}x${ABC[C:C+4]} = _mm_loadu_ps(i${K}); $else: const __m128 vi${K}x${ABC[C:C+4]} = _mm_loadu_ps(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): $if K == 0 and C == 0: const __m128 vk${K}x${ABC[C:C+4]} = _mm_load_ps(w); $else: const __m128 vk${K}x${ABC[C:C+4]} = _mm_load_ps(w + ${K * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: __m128 vacc${ABC[C:C+4]}p${K} = _mm_mul_ps(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = _mm_add_ps(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]})); w += ${MIDDLE_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = _mm_add_ps(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 4): $if C == 0: _mm_store_ps(b, vacc${ABC[C:C+4]}p0); $else: _mm_store_ps(b + ${C}, vacc${ABC[C:C+4]}p0); b += ${CHANNEL_TILE}; } $if CHANNEL_TILE == 8: if (c != 0) { __m128 vacc0123p0 = _mm_load_ps(b); $for K in range(MIDDLE_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += 4; $if K == 0: const __m128 vk${K}x0123 = _mm_load_ps(w); $else: const __m128 vk${K}x0123 = _mm_load_ps(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); w += ${MIDDLE_PASS_TILE * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 _mm_store_ps(b, vacc0123p0); b += 4; } $else: for (; c != 0; c -= 4) { __m128 vacc0123p0 = _mm_load_ps(b); $for K in range(MIDDLE_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += 4; $if K == 0: const __m128 vk${K}x0123 = _mm_load_ps(w); $else: const __m128 vk${K}x0123 = _mm_load_ps(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); w += ${MIDDLE_PASS_TILE * 4}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 _mm_store_ps(b, vacc0123p0); b += 4; } } // Last pass to process up to ${LAST_PASS_TILE} inputs. { float* b = buffer; $for K in range(0, LAST_PASS_TILE): const float* i${K} = input[${K}]; assert(i${K} != NULL); if XNN_UNPREDICTABLE(i${K} != zero) { i${K} = (const float*) ((uintptr_t) i${K} + input_offset); } size_t c = channels; $if CHANNEL_TILE > 4: for (; c >= ${CHANNEL_TILE}; c -= ${CHANNEL_TILE}) { $for C in range(0, CHANNEL_TILE, 4): $if C == 0: __m128 vacc${ABC[C:C+4]}p0 = _mm_load_ps(b); $else: __m128 vacc${ABC[C:C+4]}p0 = _mm_load_ps(b + ${C}); b += ${CHANNEL_TILE}; $for K in range(LAST_PASS_TILE): $for C in range(0, CHANNEL_TILE, 4): $if C == 0: const __m128 vi${K}x${ABC[C:C+4]} = _mm_loadu_ps(i${K}); $else: const __m128 vi${K}x${ABC[C:C+4]} = _mm_loadu_ps(i${K} + ${C}); i${K} += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 4): $if K == 0 and C == 0: __m128 vk${K}x${ABC[C:C+4]} = _mm_load_ps(w); $else: __m128 vk${K}x${ABC[C:C+4]} = _mm_load_ps(w + ${K * CHANNEL_TILE + C}); $for C in range(0, CHANNEL_TILE, 4): $if 1 <= K < ACCUMULATORS: __m128 vacc${ABC[C:C+4]}p${K} = _mm_mul_ps(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]}); $else: vacc${ABC[C:C+4]}p${K % ACCUMULATORS} = _mm_add_ps(vacc${ABC[C:C+4]}p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x${ABC[C:C+4]}, vk${K}x${ABC[C:C+4]})); w += ${LAST_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]}p${A} = _mm_add_ps(vacc${ABC[C:C+4]}p${A}, vacc${ABC[C:C+4]}p${A + ACC_SLICE}); $ACC_SLICE *= 2 $for C in range(0, CHANNEL_TILE, 4): __m128 vacc${ABC[C:C+4]} = _mm_max_ps(vacc${ABC[C:C+4]}p0, vmin); $for C in range(0, CHANNEL_TILE, 4): vacc${ABC[C:C+4]} = _mm_min_ps(vacc${ABC[C:C+4]}, vmax); $for C in range(0, CHANNEL_TILE, 4): $if C == 0: _mm_storeu_ps(output, vacc${ABC[C:C+4]}); $else: _mm_storeu_ps(output + ${C}, vacc${ABC[C:C+4]}); output += ${CHANNEL_TILE}; } for (; c >= 4; c -= 4) { __m128 vacc0123p0 = _mm_load_ps(b); b += 4; $for K in range(LAST_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); i${K} += 4; $if K == 0: __m128 vk${K}x0123 = _mm_load_ps(w); $else: __m128 vk${K}x0123 = _mm_load_ps(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); $if CHANNEL_TILE > 4: w += ${LAST_PASS_TILE * 4}; $else: w += ${LAST_PASS_TILE * CHANNEL_TILE}; $if ACCUMULATORS > 1: // Add up all accumulators to vacc0123p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 __m128 vacc0123 = _mm_max_ps(vacc0123p0, vmin); vacc0123 = _mm_min_ps(vacc0123, vmax); _mm_storeu_ps(output, vacc0123); output += 4; } if XNN_UNLIKELY(c != 0) { __m128 vacc0123p0 = _mm_load_ps(b); $for K in range(LAST_PASS_TILE): const __m128 vi${K}x0123 = _mm_loadu_ps(i${K}); $if K == 0: __m128 vk${K}x0123 = _mm_load_ps(w); $else: __m128 vk${K}x0123 = _mm_load_ps(w + ${K * 4}); $if 1 <= K < ACCUMULATORS: __m128 vacc0123p${K} = _mm_mul_ps(vi${K}x0123, vk${K}x0123); $else: vacc0123p${K % ACCUMULATORS} = _mm_add_ps(vacc0123p${K % ACCUMULATORS}, _mm_mul_ps(vi${K}x0123, vk${K}x0123)); $if ACCUMULATORS > 1: // Add up all accumulators to vacc${ABC[0:CHANNEL_TILE]}p0 $ACC_SLICE = 1 $while ACC_SLICE < ACCUMULATORS: $for A in range(0, ACCUMULATORS, ACC_SLICE * 2): $if A + ACC_SLICE < ACCUMULATORS: vacc0123p${A} = _mm_add_ps(vacc0123p${A}, vacc0123p${A + ACC_SLICE}); $ACC_SLICE *= 2 __m128 vacc0123 = _mm_max_ps(vacc0123p0, vmin); vacc0123 = _mm_min_ps(vacc0123, vmax); if (c & 2) { _mm_storel_pi((__m64*) output, vacc0123); vacc0123 = _mm_movehl_ps(vacc0123, vacc0123); output += 2; } if (c & 1) { _mm_store_ss(output, vacc0123); output += 1; } } } input = (const float**) ((uintptr_t) input + input_stride); output = (float*) ((uintptr_t) output + output_increment); } while (--output_width != 0); }