// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert CHANNEL_TILE % 8 == 0 $assert CHANNEL_TILE >= 8 $assert PIXEL_TILE == 1 $ABC = "456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include #include #include void xnn_f16_ibilinear_ukernel__fma3_c${CHANNEL_TILE}${"" if PIXEL_TILE == 1 else "x%d" % PIXEL_TILE}( size_t output_pixels, size_t channels, const void** restrict input, size_t input_offset, const void* restrict weights, void* restrict output, size_t output_increment) XNN_OOB_READS { assert(output_pixels != 0); assert(channels != 0); assert(channels % sizeof(uint16_t) == 0); uint16_t* o = (uint16_t*) output; do { const uint16_t* i0 = (const uint16_t*) ((uintptr_t) input[0] + input_offset); const uint16_t* i1 = (const uint16_t*) ((uintptr_t) input[1] + input_offset); const uint16_t* i2 = (const uint16_t*) ((uintptr_t) input[2] + input_offset); const uint16_t* i3 = (const uint16_t*) ((uintptr_t) input[3] + input_offset); input += 4; const __m256 valphahv = _mm256_cvtph_ps(_mm_castps_si128(_mm_broadcast_ss(weights))); const __m256 valphah = _mm256_permute_ps(valphahv, _MM_SHUFFLE(2, 0, 2, 0)); const __m256 valphav = _mm256_permute_ps(valphahv, _MM_SHUFFLE(3, 1, 3, 1)); weights = (const uint16_t*) weights + 2; size_t c = channels; $if CHANNEL_TILE > 8: for (; c >= ${CHANNEL_TILE} * sizeof(uint16_t); c -= ${CHANNEL_TILE} * sizeof(uint16_t)) { const __m256 vtl${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); const __m256 vtr${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1)); const __m256 vbl${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); const __m256 vbr${ABC[0:8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3)); $for C in range(8, CHANNEL_TILE, 8): const __m256 vtl${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i0 + ${C}))); const __m256 vtr${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i1 + ${C}))); const __m256 vbl${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i2 + ${C}))); const __m256 vbr${ABC[C:C+8]} = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) (i3 + ${C}))); i0 += ${CHANNEL_TILE}; i1 += ${CHANNEL_TILE}; i2 += ${CHANNEL_TILE}; i3 += ${CHANNEL_TILE}; $for C in range(0, CHANNEL_TILE, 8): const __m256 vtd${ABC[C:C+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vtr${ABC[C:C+8]}, vtl${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); const __m256 vbd${ABC[C:C+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vbr${ABC[C:C+8]}, vbl${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); $for C in range(0, CHANNEL_TILE, 8): const __m256 vt${ABC[C:C+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vtd${ABC[C:C+8]}, valphah, vtl${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); const __m256 vb${ABC[C:C+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vbd${ABC[C:C+8]}, valphah, vbl${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); $for C in range(0, CHANNEL_TILE, 8): const __m256 vd${ABC[C:C+8]} = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vb${ABC[C:C+8]}, vt${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT)); $for C in range(0, CHANNEL_TILE, 8): const __m128i vo${ABC[C:C+8]} = _mm256_cvtps_ph(_mm256_fmadd_ps(vd${ABC[C:C+8]}, valphav, vt${ABC[C:C+8]}), _MM_FROUND_TO_NEAREST_INT); _mm_storeu_si128((__m128i*) o, vo${ABC[0:8]}); $for C in range(8, CHANNEL_TILE, 8): _mm_storeu_si128((__m128i*) (o + ${C}), vo${ABC[C:C+8]}); o += ${CHANNEL_TILE}; } for (; c >= 8 * sizeof(uint16_t); c -= 8 * sizeof(uint16_t)) { const __m256 vtl = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8; const __m256 vtr = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1)); i1 += 8; const __m256 vbl = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); i2 += 8; const __m256 vbr = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3)); i3 += 8; const __m256 vtd = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vtr, vtl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vbd = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vbr, vbl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vt = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vtd, valphah, vtl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vb = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vbd, valphah, vbl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vd = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vb, vt), _MM_FROUND_TO_NEAREST_INT)); const __m128i vo = _mm256_cvtps_ph(_mm256_fmadd_ps(vd, valphav, vt), _MM_FROUND_TO_NEAREST_INT); _mm_storeu_si128((__m128i*) o, vo); o += 8; } if XNN_UNLIKELY(c != 0) { const __m256 vtl = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i0)); i0 += 8; const __m256 vtr = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i1)); i1 += 8; const __m256 vbl = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i2)); i2 += 8; const __m256 vbr = _mm256_cvtph_ps(_mm_loadu_si128((const __m128i*) i3)); i3 += 8; const __m256 vtd = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vtr, vtl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vbd = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vbr, vbl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vt = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vtd, valphah, vtl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vb = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_fmadd_ps(vbd, valphah, vbl), _MM_FROUND_TO_NEAREST_INT)); const __m256 vd = _mm256_cvtph_ps(_mm256_cvtps_ph(_mm256_sub_ps(vb, vt), _MM_FROUND_TO_NEAREST_INT)); __m128i vo = _mm256_cvtps_ph(_mm256_fmadd_ps(vd, valphav, vt), _MM_FROUND_TO_NEAREST_INT); if (c & (4 * sizeof(uint16_t))) { _mm_storel_epi64((__m128i*) o, vo); vo = _mm_unpackhi_epi64(vo, vo); o += 4; } if (c & (2 * sizeof(uint16_t))) { _mm_storeu_si32(o, vo); vo = _mm_srli_epi64(vo, 32); o += 2; } if (c & (1 * sizeof(uint16_t))) { *o = (uint16_t) _mm_extract_epi16(vo, 0); o += 1; } } o = (uint16_t*) ((uintptr_t) o + output_increment); } while (--output_pixels != 0); }