// Copyright 2022 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. $assert PIXEL_TILE >= 1 $assert PIXEL_TILE % 4 == 0 $ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ" #include #include #include void xnn_f16_ibilinear_chw_ukernel__neonfp16arith_p${PIXEL_TILE}( size_t output_pixels, size_t channels, const void** restrict input, size_t input_offset, const void* restrict weights, void* restrict output, size_t input_increment) XNN_OOB_READS { assert(output_pixels != 0); assert(channels != 0); assert(input_increment % sizeof(uint16_t) == 0); uint16_t* o = (uint16_t*) output; do { const uint16_t** i = (const uint16_t**)input; const uint16_t* w = weights; size_t p = output_pixels; $if PIXEL_TILE > 4: for (; p >= ${PIXEL_TILE}; p -= ${PIXEL_TILE}) { $for P in range(PIXEL_TILE): const uint16_t* itl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P}] + input_offset); const uint16_t* ibl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P + 1}] + input_offset); i += 2 * ${PIXEL_TILE}; $for P in range(0, PIXEL_TILE, 4): const uint16x4x2_t vw${ABC[P:P+4]} = vld2_u16(w); w += 8; $for P in range(0, PIXEL_TILE, 4): float16x8_t vtltr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) itl${ABC[P]})); float16x8_t vblbr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) ibl${ABC[P]})); $for L in range(1, 4): $for P in range(0, PIXEL_TILE, 4): vtltr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl${ABC[P+L]}, vreinterpretq_u32_f16(vtltr${ABC[P:P+4]}), ${L})); vblbr${ABC[P:P+4]} = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl${ABC[P+L]}, vreinterpretq_u32_f16(vblbr${ABC[P:P+4]}), ${L})); $for P in range(0, PIXEL_TILE, 8): const float16x8_t valphah${ABC[P:P+8]} = vreinterpretq_f16_u16(vcombine_u16(vw${ABC[P:P+4]}.val[0], vw${ABC[P+4:P+8]}.val[0])); const float16x8_t valphav${ABC[P:P+8]} = vreinterpretq_f16_u16(vcombine_u16(vw${ABC[P:P+4]}.val[1], vw${ABC[P+4:P+8]}.val[1])); $for P in range(0, PIXEL_TILE, 4): const float16x8_t vldrd${ABC[P:P+4]} = vsubq_f16(vblbr${ABC[P:P+4]}, vtltr${ABC[P:P+4]}); $for P in range(0, PIXEL_TILE, 8): const float16x8x2_t vld_t${ABC[P:P+8]} = vuzpq_f16(vldrd${ABC[P:P+4]}, vldrd${ABC[P+4:P+8]}); const float16x8_t vld${ABC[P:P+8]} = vld_t${ABC[P:P+8]}.val[0]; const float16x8_t vrd${ABC[P:P+8]} = vld_t${ABC[P:P+8]}.val[1]; $for P in range(0, PIXEL_TILE, 8): const float16x8x2_t vtl_t${ABC[P:P+8]} = vuzpq_f16(vtltr${ABC[P:P+4]}, vtltr${ABC[P+4:P+8]}); const float16x8_t vtl${ABC[P:P+8]} = vtl_t${ABC[P:P+8]}.val[0]; const float16x8_t vtr${ABC[P:P+8]} = vtl_t${ABC[P:P+8]}.val[1]; $for P in range(0, PIXEL_TILE, 8): const float16x8_t vl${ABC[P:P+8]} = vfmaq_f16(vtl${ABC[P:P+8]}, vld${ABC[P:P+8]}, valphav${ABC[P:P+8]}); const float16x8_t vr${ABC[P:P+8]} = vfmaq_f16(vtr${ABC[P:P+8]}, vrd${ABC[P:P+8]}, valphav${ABC[P:P+8]}); $for P in range(0, PIXEL_TILE, 8): const float16x8_t vd${ABC[P:P+8]} = vsubq_f16(vr${ABC[P:P+8]}, vl${ABC[P:P+8]}); $for P in range(0, PIXEL_TILE, 8): const float16x8_t vo${ABC[P:P+8]} = vfmaq_f16(vl${ABC[P:P+8]}, vd${ABC[P:P+8]}, valphah${ABC[P:P+8]}); $for P in range(0, PIXEL_TILE, 8): vst1q_u16(o, vreinterpretq_u16_f16(vo${ABC[P:P+8]})); o += 8; } for (; p >= 4; p -= 4) { $for P in range(4): const uint16_t* itl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P}] + input_offset); const uint16_t* ibl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P + 1}] + input_offset); i += 8; const uint16x4x2_t vw = vld2_u16(w); w += 8; float16x8_t vtltr = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) itl${ABC[0]})); float16x8_t vblbr = vreinterpretq_f16_u32(vld1q_dup_u32((const void*) ibl${ABC[0]})); $for P in range(1, 4): vtltr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) itl${ABC[P]}, vreinterpretq_u32_f16(vtltr), ${P})); vblbr = vreinterpretq_f16_u32(vld1q_lane_u32((const void*) ibl${ABC[P]}, vreinterpretq_u32_f16(vblbr), ${P})); const float16x4_t valphah = vreinterpret_f16_u16(vw.val[0]); const float16x4_t valphav = vreinterpret_f16_u16(vw.val[1]); const float16x8_t vldrd = vsubq_f16(vblbr, vtltr); const float16x4x2_t vld_t = vuzp_f16(vget_low_f16(vldrd), vget_high_f16(vldrd)); const float16x4_t vld = vld_t.val[0]; const float16x4_t vrd = vld_t.val[1]; const float16x4x2_t vtl_t = vuzp_f16(vget_low_f16(vtltr), vget_high_f16(vtltr)); const float16x4_t vtl = vtl_t.val[0]; const float16x4_t vtr = vtl_t.val[1]; const float16x4_t vl = vfma_f16(vtl, vld, valphav); const float16x4_t vr = vfma_f16(vtr, vrd, valphav); const float16x4_t vd = vsub_f16(vr, vl); const float16x4_t vo = vfma_f16(vl, vd, valphah); vst1_u16(o, vreinterpret_u16_f16(vo)); o += 4; } if XNN_UNLIKELY(p != 0) { if (p & 2) { $for P in range(2): const uint16_t* itl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P}] + input_offset); const uint16_t* ibl${ABC[P]} = (const uint16_t*) ((uintptr_t) i[${2 * P + 1}] + input_offset); i += 4; const float16x4_t vw = vreinterpret_f16_u16(vld1_u16(w)); w += 4; const float16x4x2_t vwhv = vuzp_f16(vw, vw); const float16x4_t valphah = vwhv.val[0]; const float16x4_t valphav = vwhv.val[1]; float16x4_t vtltr = vreinterpret_f16_u32(vld1_dup_u32((const void*) itl${ABC[0]})); float16x4_t vblbr = vreinterpret_f16_u32(vld1_dup_u32((const void*) ibl${ABC[0]})); vtltr = vreinterpret_f16_u32(vld1_lane_u32((const void*) itl${ABC[1]}, vreinterpret_u32_f16(vtltr), 1)); vblbr = vreinterpret_f16_u32(vld1_lane_u32((const void*) ibl${ABC[1]}, vreinterpret_u32_f16(vblbr), 1)); const float16x4_t vldrd = vsub_f16(vblbr, vtltr); const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd); const float16x4_t vld = vld_t.val[0]; const float16x4_t vrd = vld_t.val[1]; const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr); const float16x4_t vtl = vtl_t.val[0]; const float16x4_t vtr = vtl_t.val[1]; const float16x4_t vl = vfma_f16(vtl, vld, valphav); const float16x4_t vr = vfma_f16(vtr, vrd, valphav); const float16x4_t vd = vsub_f16(vr, vl); const float16x4_t vo = vfma_f16(vl, vd, valphah); vst1_lane_u32((void*) o, vreinterpret_u32_f16(vo), 0); o += 2; } if (p & 1) { // We are computing the following formula: // result = (1 - alpha_h) * (1 - alpha_v) * top_left + // alpha_h * (1 - alpha_v) * top_right + // (1 - alpha_h) * alpha_v * bottom_left + // alpha_h * alpha_v * bottom_right. // // Rearranging gives // result = left + alpha_h * (right - left), // where // left = top_left + alpha_v * (bottom_left - top_left), // right = top_right + alpha_v * (bottom_right - top_right). const uint16_t* itl = (const uint16_t*) ((uintptr_t) i[0] + input_offset); const uint16_t* ibl = (const uint16_t*) ((uintptr_t) i[1] + input_offset); i += 2; const float16x4_t vw = vreinterpret_f16_u32(vld1_dup_u32((const void*) w)); w += 2; const float16x4x2_t vwhv = vuzp_f16(vw, vw); const float16x4_t valphah = vwhv.val[0]; const float16x4_t valphav = vwhv.val[1]; const float16x4_t vtltr = vreinterpret_f16_u32(vld1_dup_u32((const void*) itl)); const float16x4_t vblbr = vreinterpret_f16_u32(vld1_dup_u32((const void*) ibl)); const float16x4_t vldrd = vsub_f16(vblbr, vtltr); const float16x4x2_t vld_t = vuzp_f16(vldrd, vldrd); const float16x4_t vld = vld_t.val[0]; const float16x4_t vrd = vld_t.val[1]; const float16x4x2_t vtl_t = vuzp_f16(vtltr, vtltr); const float16x4_t vtl = vtl_t.val[0]; const float16x4_t vtr = vtl_t.val[1]; const float16x4_t vl = vfma_f16(vtl, vld, valphav); const float16x4_t vr = vfma_f16(vtr, vrd, valphav); const float16x4_t vd = vsub_f16(vr, vl); const float16x4_t vo = vfma_f16(vl, vd, valphah); vst1_lane_u16(o, vreinterpret_u16_f16(vo), 0); o += 1; } } input_offset += input_increment; } while (--channels != 0); }