// Copyright 2020 Google LLC // // This source code is licensed under the BSD-style license found in the // LICENSE file in the root directory of this source tree. #include #include #include #include #include #include #include #include #include #include namespace xnnpack { namespace aarch64 { namespace { class Generator : public MacroAssembler { using MacroAssembler::MacroAssembler; public: void generate(size_t max_mr, size_t nc_mod_nr, size_t kc, const jit_gemm_params* jit_gemm_params); void perform_post_operations(size_t max_mr, size_t num_post_operations, const xnn_post_operation* post_operations); }; // void xnn_f16_gemm_minmax_ukernel_1x16__asm_aarch64_neonfp16arith_ld64( // size_t mr, (x0) - unused. mr = 1 // size_t nc, x1 // size_t kc, x2 / x0 // const void* restrict a, x3 // size_t a_stride, (x4) - unused // const void* restrict w, x5 // void* restrict c, x6 // size_t cm_stride, (x7) - unused // size_t cn_stride, [sp] -> x14 // const union xnn_f16_minmax_params params[restrict XNN_MIN_ELEMENTS(1)]) [sp + 8] -> (x8) // d8-d15, x19-x30 need to be preserved if used. x18 is reserved by the OS. // Register usage // A0 x8 v0 // B x5 v24 v25 v26 v27 v28 v29 v30 v31 // C0 x6 v16 v17 v18 v19 v20 v21 v22 v23 // clamp v4, v5 // Converted from: src/f16-gemm/gen/f16-gemm-1x16-minmax-asm-aarch64-neonfp16arith-ld64.S void Generator::generate(size_t max_mr, size_t nc_mod_nr, size_t kc, const jit_gemm_params* jit_gemm_params) { assert(max_mr <= 1); assert(nc_mod_nr < 16); assert(kc != 0); assert(kc % sizeof(uint16_t) == 0); Label l0, l1, l2, l3, l4, l5, l6, l7, l8, l9; const size_t num_post_operations = jit_gemm_params->num_post_operations; const xnn_post_operation* post_operations = jit_gemm_params->post_operations; const uint16_t min = jit_gemm_params->f16_minmax.min; const uint16_t max = jit_gemm_params->f16_minmax.max; const bool clamp_min = min != UINT16_C(0xFC00); // -Inf. const bool clamp_max = max != UINT16_C(0x7C00); // Inf. assert(num_post_operations == 0 || (!clamp_min && !clamp_max)); // Load cn_stride, params pointer ldp(x14, x8, mem[sp]); // Load params values if (clamp_min || clamp_max) { ld2r({v4.v8h(), v5.v8h()}, mem[x8]); } bind(l0); // Load initial bias from w into accumulators ldp(q16, q17, mem[x5], 32); movi(v18.v8h(), 0); // 4 sets of C for pipelining FMLA movi(v19.v8h(), 0); movi(v20.v8h(), 0); movi(v21.v8h(), 0); movi(v22.v8h(), 0); movi(v23.v8h(), 0); // Is there at least 4 halffloats (8 bytes) subs(x0, x2, 8); // k = kc - 8 b_lo(l3); align(8); // Main loop - 4 halffloats of A (8 bytes) bind(l1); ldr(d0, mem[x3], 8); ldr(q24, mem[x5, 0]); ldr(q25, mem[x5, 16]); ldr(q26, mem[x5, 32]); ldr(q27, mem[x5, 48]); ldr(q28, mem[x5, 64]); ldr(q29, mem[x5, 80]); ldr(q30, mem[x5, 96]); ldr(q31, mem[x5, 112]); subs(x0, x0, 8); fmla(v16.v8h(), v24.v8h(), v0.h()[0]); fmla(v17.v8h(), v25.v8h(), v0.h()[0]); fmla(v18.v8h(), v26.v8h(), v0.h()[1]); fmla(v19.v8h(), v27.v8h(), v0.h()[1]); fmla(v20.v8h(), v28.v8h(), v0.h()[2]); fmla(v21.v8h(), v29.v8h(), v0.h()[2]); fmla(v22.v8h(), v30.v8h(), v0.h()[3]); fmla(v23.v8h(), v31.v8h(), v0.h()[3]); add(x5, x5, 128); b_hs(l1); // Is there a remainder- 1 to 3 halffloats of A (2 to 6 bytes) ands(x0, x0, 7); b_ne(l3); bind(l2); fadd(v16.v8h(), v16.v8h(), v18.v8h()); fadd(v17.v8h(), v17.v8h(), v19.v8h()); fadd(v20.v8h(), v20.v8h(), v22.v8h()); fadd(v21.v8h(), v21.v8h(), v23.v8h()); fadd(v16.v8h(), v16.v8h(), v20.v8h()); fadd(v17.v8h(), v17.v8h(), v21.v8h()); subs(x1, x1, 16); // Clamp if (clamp_min) { fmax(v16.v8h(), v16.v8h(), v4.v8h()); fmax(v17.v8h(), v17.v8h(), v4.v8h()); } if (clamp_max) { fmin(v16.v8h(), v16.v8h(), v5.v8h()); fmin(v17.v8h(), v17.v8h(), v5.v8h()); } perform_post_operations(max_mr, num_post_operations, post_operations); // Store full 1 x 16 b_lo(l5); stp(q16, q17, mem[x6]); add(x6, x6, x14); sub(x3, x3, x2); // a0 -= kc b_hi(l0); ret(); // Remainder- 1 to 3 halffloats of A (2 to 6 bytes) bind(l3); tbz(x0, 2, l4); ldr(s0, mem[x3], 4); ldr(q24, mem[x5, 0]); ldr(q25, mem[x5, 16]); ldr(q26, mem[x5, 32]); ldr(q27, mem[x5, 48]); fmla(v16.v8h(), v24.v8h(), v0.h()[0]); fmla(v17.v8h(), v25.v8h(), v0.h()[0]); fmla(v18.v8h(), v26.v8h(), v0.h()[1]); fmla(v19.v8h(), v27.v8h(), v0.h()[1]); add(x5, x5, 64); tbz(x0, 1, l2); bind(l4); ldr(h0, mem[x3], 2); ldr(q24, mem[x5, 0]); ldr(q25, mem[x5, 16]); fmla(v16.v8h(), v24.v8h(), v0.h()[0]); fmla(v17.v8h(), v25.v8h(), v0.h()[0]); add(x5, x5, 32); b(l2); // Store odd channels bind(l5); tbz(x1, 3, l6); str(q16, mem[x6], 16); mov(v16.v16b(), v17.v16b()); bind(l6); tbz(x1, 2, l7); str(d16, mem[x6], 8); dup(d16, v16.d()[1]); bind(l7); tbz(x1, 1, l8); str(s16, mem[x6], 4); dup(s16, v16.s()[1]); bind(l8); tbz(x1, 0, l9); str(h16, mem[x6]); bind(l9); ret(); align(16, AlignInstruction::kHlt); } void Generator::perform_post_operations( size_t max_mr, size_t num_post_operations, const xnn_post_operation* post_operations) { if (num_post_operations == 0) { return; } for (size_t i = 0; i < num_post_operations; i++) { switch (post_operations[i].op_type) { case xnn_post_operation_type_hardswish: { // Reuse A pointers (don't use v8-v15 as they are callee saved). const auto sixth = v0.v4s(); const auto three = v1.v4s(); const auto six = v2.v4s(); const auto zero = v3.v4s(); // v4, v5, v6, v7 available for temporaries. ld3r({sixth, three, six}, mem[x8]++); movi(zero, 0); const VRegister accs[] = { v16.v4s(), v17.v4s(), }; const VRegister tmps[] = {v4.v4s(), v5.v4s()}; f32_hardswish(sixth, three, six, zero, &accs[0], XNN_COUNT_OF(accs), &tmps[0], XNN_COUNT_OF(tmps)); break; } default: XNN_LOG_UNREACHABLE("unsupported post operation: %u", post_operations[i].op_type); } } } } // namespace } // namespace aarch64 } // namespace xnnpack xnn_status_t xnn_generate_f16_gemm_ukernel_1x16__aarch64_neonfp16arith_ld64(xnn_code_buffer* code, size_t max_mr, size_t nc_mod_nr, size_t kc, const void* params) { using namespace xnnpack::aarch64; Generator g(code); assert(params != nullptr); g.generate(max_mr, nc_mod_nr, kc, static_cast(params)); g.finalize(); if (g.error() != xnnpack::Error::kNoError) { return xnn_status_invalid_state; } return xnn_status_success; }